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Ancient mathematical texts and artefacts, if we are to understand them fully, must be viewed in the
light of their mathematico-historical context, and not treated as artificial, self-contained creations in
the style of detective stories. | take as a dramatic case study the famous cuneiform tablet Plimpton 322.
| show that the popular view of it as some sort of trigonometric table cannot be correct, given what is
now known of the concept of angle in the Old Babylonian period. Neither is the equally widespread
theory of generating functions likely to be correct. | provide supporting evidence in a strong theoretical
framework for an alternative interpretation, first published half a century ago in a different guise. |
recast it using regular reciprocal pairs, Hgyrup’s analysis of contemporaneous “naive geometry,” and
a new reading of the table’s headings. In contextualising Plimpton 322 (and perhaps thereby knocking
it off its pedestal), | argue that cuneiform culture produced many dozens, if not hundreds, of other
mathematical texts which are equally worthy of the modern mathematical community’s attention.

Wir mussen frilhe mathematische Texte und Objekte im Hinblick auf ihre mathematisch-historische
Umgebung betrachten und sie nicht als kunstliche, vollstandige Schopfungen im Stile von
Detektivgeschichten behandeln, wollen wir sie verstehen. Als dramatische Fallstudies dient mir die
Keilschrifttafel Plimpton 322. Ich zeige auf, dass die weitverbreitete Ansicht, so etwas wie eine
trigonometrische Tabelle vor uns zu haben, nicht richtig sein kann, und zwar aufgrund unseres Wissens
Uiber die Vorstellung des Winkels in altbabylonischer Zeit. In gleiche Weise ist die gangige Theorie
Uber erzeugende Funktionen wahrscheinlich falsch. Ich kann meine Neuinterpretation, die in einen
stark theoretischen Rahmen eingebettet wird, mit Texten belegen. Hinter meiner Neuinterpretation
liegt eine funfzigjahrige Theorie, die auf Bruins zuriickgeht. Sie fundiert auf den Gebrauch von regel-
massigen, reziproken Paaren, auf Hgyrups Analyse der naiven Geometrie und auf eine neue Lesung
derUberschriften der Tabelle. Indem ich die Keilschrifttafel Plimpton 322 in ihren historischen Kon-
text stelle, pladiere ich dafiir, dass viele andere mathematische Texte mesopotamischen Ursprungs es
ebenso verdienen, von uns beachtet zu werdereoo1 Academic Press
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NEITHER SHERLOCK HOLMES. ..

Some years ago, R. Creighton Buck published an analysis of the famous cuneiform ta
Plimpton 322, in an article which he called “Sherlock Holmes in Babylon” [Buck 1980
His is by no means the only study of the tablet, and what follows is most emphatica
not an attack on the work of Buck in particular, which is in many ways considered a
sensible, but a refutation of the many dozens of studies that Plimpton 322 has insp
since its publication in 1945. Buck’s title articulates most eloquently and engagingly, alb
unwittingly, a common attitude of mathematicians to the history of ancient mathemat
over the past half century (and arguably longer): that it can be treated rather like a piec
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detective fiction. The main protagonist is the scholar-sleuth (and note that in most cla
detective fiction, our hero(ine) is most decidedly not a professional but a genteel amat
who outwits the plodding police officers/historians every time). His task is to solve
mystery of the historical document at hand (The Mystery of the Cuneiform Tablet in c
case), with afinite, self-selected, set of clues to help him (The Strange Affair of the Numer
Errors). And of course, the setting is a bounded one: not even the isolated country hou
the railway carriage, but just the text itself. The real world does not intrude on our schol
sleuth: historical and linguistic context is an irrelevance, we are implicitly led to believ
which only the dullard history-police choose to bother themselves with. Like the scenat
of detective fiction, pieces of mathematics are self-contained worlds, whose mysteries
be solved by close analysis of nothing but themselves.

But, although it may be argued that the (re)construction of history is nothing more tt
inventing more or less plausible stories about the past, each of which will differ accord
to the historians who tell them, the mathematical artefacts of the past most certainly do
themselves resemble the self-contained settings of a country house mystery. Mathem
is, and always has been, written by real people, within particular mathematical cultu
which are themselves the products of the society in which those writers of mathema
live. It is the aim of this article to show how dramatically more convincing a story one ¢
tell about Plimpton 322 if it is put into its mathematico-historical setting.

One of the enduring attractions of Plimpton 322 for the mathematical community t
been that it exhibits sophisticated and systematic mathematical techniques for an appar
“pure” end, either “number-theoretical” or “trigonometric But a mathematical culture
comprises more than its most spectacular discoveries. It is both pernicious and sim
minded to cherry-pick the “cleverest” or “most sophisticated” mathematical procedures
any society) to present as the history of mathematics. David Pingree has argued that:

the [...] attitude that what is valuable in the past is what we have in the present [...] makes historians
become treasure hunters seeking pearls in the dung heap without any concern for where the oysters live
and how they manufacture gems. [Pingree 1992, 562]

This is exactly what the purveyors of the wonders of Plimpton 322 have, by and large, b
doing hitherto. They have also unwittingly perpetuated the colonisation, appropriation, :
domestication of the pre-Islamic Middle East by the Western present, as described by Za
Bahrani:

It is at once the earliest phase of a universal history of mankind in which man makes the giant step
from savagery to civilisation, and it is an example of the unchanging nature of Oriental cultures. [In the
Orientalist view] the Mesopotamian past is the place of world culture’s first infantile steps: first writing,
laws, architecture and all the other firsts that are quoted in every student handbook and in all the popular
accounts of Mesopotamia. [Bahrani 1998, 162]

For many people, the attraction of Plimpton 322 has been exactly its status as a “
infantile step” on the way to modern Western-style mathematics. Cooke [1997] for instar
counts Mesopotamia as producing “Early Western mathematics” simply because it pred
Classical sources, while consigning Islamic mathematics from the same region to “o
traditions” even though the latter arguably had more influence on the West than the forr

1 As hinted at already by Neugebauer and Sachs [1945, 39].
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Further, and as a direct result of this tendency to modernise and domesticate, little
tinction has been made between Plimpton 322 the historical artefact and Plimpton 322
mathematical text. The numerical table purporting to represent the original found in 1
general history books is a modern text: it is in decimal notation, in modern Indo-Arak
numerals with all errors eradicated, and printed with ink on paper. Moreover, the heading
the columns—the words, in short—may be silently omitted or replaced with (modern) sy
bolic notation for the variables each heading is supposed to represent. It is easy to forge
chronological distance and the cultural strangeness of the clay tablet itself and to analyse
interpret the paper version as modern mathematiise might compare reader-centred the-
ories of literary criticism, in which authorial intention is deemed secondary to the meani
extracted from the text by the reader. But the result is mathematics (or perhaps matheme
criticism), but not history. That is not to say that mathematical criticism is not a valid exer
cise in its own right, but any historical interpretation that it produces may tend to befacils
One characteristic of ancient mathematics that makes it difficult to handle is that it has
most) no identifiable authors—unlike, say, post-Renaissance European mathematics—
so we cannot begin to treat authorial intent or character. Piotr Michalowski’'s descripti
of the problems faced by modern readers of anonymous Mesopotamian literature apj
equally well to ancient mathematics, | think. For “poet” or “writer” read “mathematician”

Contemporary readers take for granted certain concepts of authorship and the authority of the writer.
Most of these ideas are of fairly recent origin and are very much tied to Western European ideas about
identity, originality, individuality, and the high social role of verbal art. It is hardly surprising that most

of us find it extremely difficult to shed basic post-Romantic ideas about the spiritual inspirations of
writers and the unique talents of poets. [Michalowski 1995, 183]

He goes on to discuss a prominent critic of Victorian literature who has recently turned
attention to the ancient Near East, but who

refuses to acknowledge the profound differences that separate relatively recent Western ideas abouf
literature and its privileged creators from the conceptions of a culture that prized anonymous composition
and in which the caesura between composition and redaction may not have existed, or may have had &
very different profile, and in which originality may have been seenin a very different light. [Michalowski
1995, 183]

Replace “literature” with “mathematics,” and the analysis remains a useful one.

2 Schmidt [1980] does exactly this: see pages 20—21. Cf. Knuth [1972, 676] who described a Late Babylo
table of 6-place reciprocals as consisting of a complete, ordered listing of all 231 six-place or shorter reg
reciprocal pairs between 1 and 2. In a short note a few years later he admitted he had mistaken Neugeb:s
reconstruction for the ancient original (which would have contained only 136 of the 231 pairs, even when compl
[Knuth 1976].

3Two very interesting and useful discussions of the applicability of modern literary theory to Sumerian a
Akkadian literatures are Michalowski[1995] and Black [1998, 42—48]. They contain much to provoke and stimul
the theoretically minded historian and translator of mathematics, as well as agood deal of useful cultural backgr
on OB mathematics.

4 One recalls the “rationalist reconstruction” school of the history of the exact sciences, which was entir
internalist in approach. Its followers contended that ancient mathematics could be analysed and lacunae re:s
solely on the basis of how mathematics happened to look in the mid-20th century, and that they as mathemati
had a privileged reading of that mathematics. The mathematics alone was their subject: its cultural and lingu
setting was considered largely irrelevant [cf. Hayrup 1996, 13-17; Kragh 1987, 161]. The phrase “rationz
reconstruction” was particularly invidious, implying as it did that other approaches were somehow irrational ¢
therefore unscholarly, and that this approach was simply restoring what must have been.
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But even whenwe know nothing about the authors of ancient mathematics as individua
their names, ages, or even which city or century they lived in—we can now (re)constru
reasonably convincing picture of the cultural milieu in which mathematics was created. -
better our understanding of a society, the greater our chances of producing a historic
credible analysis of one of its products. When we read Victorian mathematics, for insta
we need little conscious effort to contextualise it because it is chronologically, linguis
cally, and culturally so close to us. But the more ancient, the more foreign, the more a
the mathematics the greater the need to deliberately set out to explore its setting and
conscious of the cultural baggage we carry with us as modern readers—and the greate
the inherent difficulties in doing so. For the purposes of the historian there can be no s
thing as a Platonic body of mathematics existing independent of human discovery: recol
mathematics is essentially a social product, conceived and articulated by individuals
societies with particular preconceptions, motivations, and modes of communication.

Close reading of the language and terminology of ancient texts is therefore crucia
understanding the conceptual realities that underlie them. Indeed, the interpretatio
Plimpton 322 supported here is based on linguistic analysis at two points: Jens Hayr
understanding of the first, damaged word of the first column, and my analysis of the term
geometrical shapes. This latter allows the “trigonometric” theory of Plimpton 322 (whi
has always felt uncomfortable to those of historical sensitivity) to be refuted with mc
force than before.

In what follows, | first present as neutral a description as | can of the cuneiform tablet,
contents, and a little of the culture which produced it. | then go on to present a compo
picture of the generally accepted interpretation of it over the past half century. In the tt
section, | show why this composite picture cannot be correct, given what is known
the culture which produced Plimpton 322. Finally, | present an alternative interpretati
first put forward shortly after the tablet’s publication but largely ignored, which will shoy
Plimpton 322 to be fully integrated into the mainstream of Old Babylonian mathemati
thought. My argument does not rest on Holmesian internal mathematical inferences al
but instead draws on cultural, linguistic, and archaeological evidence too.

...NOR BABYLON

Plimpton 322 is the modern label given to a cuneiform tablet written in the ancient Irz
city of Larsa in the mid-18th century BCE.

Old Babylonian (OB) mathematics, the oldest known body of “pure” mathematics
the world, derived from two separate traditions in early Mesopotamia: an orally-bas
“surveyors’ algebra” and a bureaucratic accountancy culture. The “surveyors’ algebra
heavily based on riddles concerning cut-and-paste geometry and has its origins outsid
literate scribal tradition in the late third millennium [cf. Hayrup 1990, 79]. Scribes, on tt
other hand, had been directly concerned with the quantitative control of goods, time,
labour since the advent of writing at the end of the fourth millennium [Nissah1993; cf.
Robson 2000b; 2000c]. Their complex system of metrology, work norms, and other techn
constants also reached its apex at the end of the third millennium, under the so-called T
Dynasty of Ur Il [Englund 1991; Robson 1999, 138-166]. The two traditions coalesc
into the mathematics of the OB humanist scribal schools of the early second millennit
where education appears to have comprised far more than the acquisition of professio



HMAT 28 REASSESSMENT OF PLIMPTON 322 171

<

= *’%ﬁ?{gﬁ?ﬁ ]

FIG. 1. The obverse of Plimpton 322 (drawing by the author).

useful skills. Although the archaeology of Old Babylonian schools is not clear-cut al
the large majority of OB mathematical tablets known are completely unprovenancec
am convinced that virtually all of the OB mathematical corpus as we have it should

interpreted as the products of scribal training, or, at the very least, as the products
scholastic milieu. Elsewhere | have elaborated a functional typology of OB mathemati
tablets, which shows them to have been written by scribal teachers or by students lear
mathematics by rote or by practice [Robson 1999, 174-183]. | certainly do not feel justif
in referring to the authors and copyists of OB mathematics as “mathematicians,” with |
connotations of creativity and professionalism this word carries; | prefer the more neus
“scribes.” On the other hand, | have no hesitation in using the pronoun “he” to descri
them, OB scribal culture having been almost exclusively male.

Plimpton 322 is, physically at least, a typical product of OB mathematical cultul
(Fig. 1). It is a clay tablet, measuring some. 42 8.8 cm as it is preserved, ruled into
four columns. It was excavated illegally sometime during the 1920s, along with ma
thousands of other cuneiform tablets, not from Babylon but from the ancient city
Larsa (modern Tell Senkereh, A% N, 45°51' E [Roaf 1990, 231]5. Its provenance is

5 If Sherlock Holmes had been in Babylon he would have been wasting his time: no OB mathematics is kn
to have come from that site—some 200 km north of Larsa—whose lower archaeological strata are virtu
inaccessible due to the high water table and Iragi renovations of the Neo-Babylonian city in the 1980s [Kt
1995, 108-109].
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given as “Senkereh” on an undated price list now housed with the Plimpton Collect
at Columbia [Banks n.d.]; this fits the characteristics of the headings, based on pal:
graphic and orthographic comparison with non-mathematical tablets from Larsa now in
Ashmolean Museum, Oxford. A lot of Larsa material was reaching western collectic
(e.g., the Ashmolean, the Louvre, and the Yale Babylonian Collection) from the antiquit
market in the 1920s, at the same time that Plimpton was buying tablets [Banks & Plimp
1922-1923, 1923]. Tabular formatting was first used in institutional bureaucracies at ne:
Nippur from around 1850 BCE, while the earliest attested administrative tables from
kingdom of Larsa date to the period 1837-1784 BCE. Tables which, like Plimpton 3:
are on “landscape” oriented tablets with calculations running horizontally across the taf
and whose final heading isu.i.m “its name” (of which more below), are attested from
1822 BCE onwards [Robson 2000d]. This allows us to confidently date Plimpton 322
the 60 years or so before the siege and capture of Larsa by Hammurabi of Babylo
1762 BCE.

The name “Plimpton 322" denotes that it is the 322nd item in Mendelsohn’s cataloc
of the cuneiform tablets held by the libraries of the University of Columbia, New York. Tk
entire catalogue entry reads:

322. Clay tablet, left-hand edge broken away, bottom of right-hand corner, and a piece of columns 3 and
4 chipped off; fairly well preserved, dark-brown. 8®12.5 cm.; on obverse 4 columns with 16 lines,
reverse blank. Content: Commercial account. No date. [Mendelsohn 1943, 71]

The tablet had originally been acquired by the New York publisher George Arthur Plimpt
for his private collection of historical mathematical artefacts, which was bequeathec
Columbia shortly before his death in 1936. He had bought it from the notorious dec
Edgar J. Banks [Banks n.d.], but it is extremely unlikely that either men understood
importance for the history of mathematics [cf. Plimpton 1993; Donoghue 988kn the
striking similarity in format and lexis between Plimpton 322 and the other early tables frc
the Larsa mentioned above, it is hardly surprising that its true character passed unno
by dealer, owner, and cataloguer alike.

The left-hand side of the tablet is missing, and has been at least since Plimpton
quired it/ There is a clean break here, along one of the vertical rulings which divic
the surface of the tablet into columns. Traces of glue remain in this break, and it |
been implied that the other fraction of the tablet must therefore have been lost in m
ern times, deliberately or otherwise. However, it was not unusual for unscrupulous e
20th-century antiquities dealers to manufacture “whole” tablets out of disparate fragme
in order to attract a higher price for them. Such an occurrence is described, for insta
by Neugebauer and Sachs [1945, 24 n. 88]. In the case of Plimpton 322 it is likely t
Banks, who had been a professional Assyriologist, was scrupulous enough to remove
extraneous matter before putting the tablet up for sale. Since it is impossible as ma
stand to determine what was originally attached to the tablet as we have it, or whet
might be now, we will treat only what is extant, and leave speculative lacunae-filling 1
later.

6| intend to deal with Plimpton and Smith’s acquisition of cuneiform tablets at greater length in the near futt

7 Compare the catalogue entry just cited with Banks’ description [Banks n.d.]: “A very large burned tablet w
one edge broken away, but with the inscription practically complete.” See too the photo in Neugebauer & S
[1945, pl. 5] which shows the tablet in exactly the same condition as in Mendelsohn [1943, pl. 2].



HMAT 28 REASSESSMENT OF PLIMPTON 322 173

TABLE 1
The Extant Contents of Plimpton 322, with Errors Corrected and the Third Element of the Triple Added

1. Square-side Ill. Square-side of (Square-side of
I. (damaged)d?/12 or b?/1? of the width,b the diagonald IV. Its name the lengtH)
(1) 59 00 15 159 249 1 2
(1) 56 56 58 14 50 06 15 56 07 12025 2 57 36
(1)5507 41153345 11641 15049 3 120
(1) 531029325216 33149 50901 4 345
(1) 485401 40 105 137 5 120
(1) 47 06 41 40 519 801 6 6
(1) 431156 28 26 40 3811 5901 7 45
(1) 41334514345 1319 2049 8 16
(1) 38 3336 36 801 12 49 9 10
(1) 3510 02 28 27 24 26 40 12241 21601 10 154
(1) 3345 45 115 11 1
(1)292154215 2759 4849 12 40
(1) 27 00 03 45 241 449 13 4
(1) 254851356 40 2931 5349 14 45
(1) 231346 40 28 53 15 45

Each of the four remaining columns contains a heading in a mixture of Sumerian &
Akkadian and 15 rows of numerical data. These rows almost fill the obverse of the tab
the reverse is blank, but has been ruled to accommodate the continuation of the colur
The tablet would have been written and read from left to right, but for the moment it
easier to explain its contents moving from right to left. Column IV is headedi.im,
the Sumerogram for Akkadiasunsu “its name,” and the numbers below it are simply
line numbers, from 1 to 15. Their extra-mathematical function can be seen in theif forr
whereas mathematical number notation writes the digits to 9 in up to three vertically ran
rows of three vertical wedges, non-mathematical units are written in only two vertica
ranged rows, with four as two above two wedges (cf. three above one) and seven to |
as four above three, four above four, and five above four wedges respectively. The mic
two extant columns, from right to left still, are headedi, (=mitharti) sliptim “the square
of the diagonal” ands.si, sac (=mitharti putim) “the square of the short side.” They
contain the lengths of the hypotenuses and widths respectively of 15 right-angled trian
(Table 1). Following Neugebauer and Sachs’ original notation [1945, 39] we can abbrevi
d = diagonal or hypotenusé,= long side or length, anti = short side or width, while
keeping in mind that this notation is for our convenience only and had no part to play
ancient mathematics.

Why do the headings refer to squares if the columns contain lengths of lines? The ans
lies in the Akkadian wordnithartum, a noun derived from the reflexive stem of the vert
maharum “to be equal and/or opposite,” which literally means “thing which is equal an
opposite to itself.” In Akkadian, as in other languages, the word for “square” can also re

8 PaceFriberg [1981a, 295], who sees their form as indicative that the tablet is “a copy of an older original”; |
does not convincingly explain, however, why (if this were the case) the orthography on the rest of the tablet is
similarly archaic.
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to its side and therefore also to “square root” [Hayrup 1990a, 49-50]. Satithrartum
(inits construct state before the genitivesibptum andputumindicating possession) must
mean not “square” but “square-side” or perhaps “square root.” In fact this dual mean
for mithartumis not as confusing as it first appears. The OB scribes used the sexages|
place value system of abstract number solely for calculating: the dimensions, weights,
capacities of the subjects of their calculation were invariably recorded in the most suitz
metrological units. With two separate systems for length and area it would have been alr
impossible for a scribe to confuse the side of a square with its area—which in any case
almost invariably written explicitly as.sA mithartim“the area of a square.” For instance,
when we read 1 Bmithartumin the first line of every problem in BM 15285 (probably from
Larsa; [Robson 1999, 208-217]) we have to translateS1dihe square-side” and not “18UJ

is the square-area” because th Id a unit of the linear metrological system (ca. 360 m)
not of the areal system. There is no ambiguity. Difficulties of interpretation arise—for us
only when we are dealing with decontextualised calculations in the sexagesimal place v
system, which were never intended by the scribes to be visible in the findl text.

The heading of the left-hand column is somewhat damaged (we will return to wha
might say later), but the 15 rows beneath it contaither the ratio of the square on the
diagonal to the square on the long simtethe ratio of the square on the short side to the
square on the long side. This ambiguity arises from the nature of the break described ea
the tablet cracked along the left edge of the column, and the impressions that remain
simply be intersections of the horizontal row rulings and the vertical column line (in whi
case the second reading is correct) or they are the remains of a series of vertical we
representing 1s, with which each number in the column originally began (in which case
have to accept the first interpretation). We leave the matter unresolved for the momen
remark that, either way, the column is sorted in descending numerical order (see Table

It is well known that there are seven errors in the tablet (see Table 2), some of which
clearly trivial copying errors, but three have a bearing on how the table should be interpre
We will come back to these later.

The sexagesimal place-value system does not mark absolute value—there is no me
nism for showing zeros of any kind, or the boundary between integers and fractions—wt
makes any decimal translation for Table 1 to some extent an arbitrary one. ;3Taiave
chosen, following conventional practice, to assume that the values in Columns II-IlI ;
integers.

AN ANALYTICAL FRAMEWORK: SIX CRITERIA FOR ASSESSMENT

Plimpton 322 has undoubtedly had the most extensive publication history of any cuneift
tablet, mathematical or otherwise. After its publicatioiMathematical Cuneiform Texts
[Neugebauer & Sachs 1945, Text A], Neugebauer discussed the tablet further in his hi
influentialExact Sciences in Antiquifileugebauer 1951]. This book was almost certainly
its primary source of dissemination into the wider mathematical community and all t

9 This duality in the meaning of “square” can be traced right back to the mid-third millennium table of squa
VAT 12593 from Shuruppag, in which the sides, in descending order, are written in linear measure followec
the sign sa “equal” (cf. the OB Sumerogréersis ‘square,” wheresis = sd), and their products are given in area
measure [Nisseat al. 1993, 136-139].
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TABLE 2
The Errors in Plimpton 322

Column Line Error Comments
| 2 56 for 50 06 Simple copying error: two places conflated
8 59 for 45 14 Simple arithmetical error: two places added
together
13 27 03 45 for 27 00 03 45 Simple copying error: the empty
sexagesimal place should be marked with a
blank space
1] 9 901 for801 Simple copying error: 9 looks very similar
to 8 in cuneiform
13 71201for241 Calculation error: square of the correct value
Ilor il 15 56 for 28 or 53 for 1 46 Calculation error: twice or half the correct
valueét
1 2 31201for12025 Calculation error: no obvious numerical
relationship

2]t has more commonly been proposed that the error lies in the third column (half the correct value) and
the correct triple is 56, 1 30, 1 46 [e.g., Neugebauer & Sachs 1945, 38, 40—-41], but it is also possible tha
second column contains the erroneous value and the triple should be 28, 45, 53 [e.g., Friberg 1981a, 288]. T
my favoured interpretation, discussed further below, and is used throughout this article, except where nece
in Table 4.

standard mathematical history books (where it is still found today). The most import:
post-ESAstudies were by Bruins [1955], Price [1964], Buck [1980], Schmidt [1980], an
Friberg [1981a]. Buck also refers to the theories of a certain Voils, whose work | have 1
managed to trace.

Before examining the relative merits of these works, we need to be clear about
criteria we should use to judge them. Moving from the external toward the internal a

TABLE 3
Decimal Translation of Plimpton 322

I. (damaged)d?/12 Il. Square-side 1. Square-side of (Square-side
orb?/12 of the width,b the diagonald IV. Its name of the lengtH)
(1).9834028 119 169 1 120
(1).9491586 3367 4825 2 3456
(1).9188021 4601 6649 3 4800
(1).8862479 12,709 18,541 4 13,500
(1).8150077 65 97 5 72
(1).7851929 319 481 6 360
(1).7199837 2291 3541 7 2700
(1).6845877 799 1249 8 960
(1).6426694 481 769 9 600
(1).5861226 4961 8161 10 6480
(1).5625 45 75 11 60
(1).4894168 1679 2929 12 2400
(1).4500174 161 289 13 240
(1).4302388 1771 3229 14 2700

(1).3871605 28 53 15 45
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from the general towards the specific, a satisfactory theory about Plimpton ought to fi
these conditions:

1.

2.

Historical sensitivity. The theory should respect the historical context of Plimptc
322 and not impose conceptually anachronistic interpretations on it.

Cultural consistency. The theory should explain the workings and function of Plimpt
322 in the light of what is known of the rest of OB mathematics, ideally using eviden
from Larsa and its environs.

. Calculational plausibility. The theory should show how Plimpton 322 was calculat

(and the errors miscalculated) with arithmetical techniques known from other OB tabl
preferably from Larsa.

. Physical reality. When making restorations to the left of the extant columns, the the

should acknowledge that Plimpton 322 is an archaeological artefact and not a disem!|
ied text. The restoration should result in a (virtual) cuneiform tablet of plausible size &
proportions.

. Textual completeness. The theory should account for, not only the numerical cont

of the tablet, but also its four column headings, explaining how they relate to the numt
below and supplying a linguistically and mathematically plausible reconstruction of t
damaged words in Column I. Every word should count for as much as every numbe

. Tabular order. The theory should explain the logical order of the columns, from left

right, and of the rows, from top to bottom, including any proposed restorations to the |
of the tablet or on the reverse. In other words, it should not violate the “grammar” of C
mathematical tables. By this | mean that all numerical tables, whether their contents
mathematical, economic, astronomical, or otherwise, are ordered from top to bott
and from left to right, and sorted in ascending or descending numerical order by
contents of the first, i.e., leftmost column. It is well known (but nowhere explicitl
stated, | think) that multiplication and metrological tables, as well as associated tat
such as square roots, behave thus [e.g., Neugebauer & Sachs 1945, 11-36], but all k
tabular calculations do too: nine unprovenanced [Neugebauer & Sachs 1945, 17-18];
from Ur [Robson 1999, 264-266]; one from Nippur [Robson 2000a, no. 10]. In sho
Column | should not be understood as derivative of Columns Il or lll but rather as a stey
the way to calculating first Il and then Ill. It should not be assumed that there is anyth
missing to the right of the tablet (such as the lengths of the long sides). Similarly, -
theory should make restorations to the left of the extant columns which are in logi
columnar order from left to right and the contents of whose leftmost column are
ascending or descending numerical order.

Armed with these six desiderata, we are now in a strong position to gauge how plaus

the various schools of thought about Plimpton 322 really are.

THE RECEIVED WISDOM
The standard theory to account for the construction of the table assumes that it

generated by a set of paips g (or in some notations, v). This Aaboe summarises in a
particularly inappropriate modernising “theorem”:
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TABLE 4
So-Called Generating Numbers for Plimpton 322
p? —q? p?+q?
p q 03 q? 2pq (Col. 1) (Col. ) (Col. IV) p/q
12 5 2 24 25 2 00 159 2 49 1 2:24
104 27 10816 12 09 57 36 56 07 120 25 2 2;22 1320
115 32 13345 17 04 1 2000 116 41 1 50 49 3 2;20 3730
205 54 42025 48 36 3 4500 331 49 5 09 01 4 2;18 5320
9 4 121 16 112 105 137 5 2:15
20 9 6 40 121 6 00 519 8 01 6 2;13 20
54 25 48 36 10 25 45 00 38 11 59 01 7 2:09 36
32 15 17 04 345 16 00 13 19 20 49 8 2;08
25 12 10 25 224 10 00 8 01 12 49 9 2;05
121 40 14921 26 40 1 4800 12241 2 16 01 10 2;01 30
2 1 4 1 4 3 5 11 2
48 25 38 24 10 25 40 00 27 59 48 49 12 1,55 12
15 8 345 104 4 00 2 41 4 49 13 1;52 30
50 27 41 10 12 09 45 00 29 31 53 49 14 1;51 06 40
9 5 121 25 130 56 1 46 15 1:48

aThe values of length (@q), width (p? — g2) and diagonal 62 + g2) in this row are twice those expected by
the method preferred here; see note to Table 2.

If pandq take on all whole values subject only to the conditions

1) p>q>0,
2) pandqg have no common divisor (save 1),
3) pandq are not both odd?

then the expressions

x = p? — g2, [ourb]
y = 2pq, [ourl]
z=p?+9?, [ourd]
will produce all reduced Pythagorean number triples, and each triple only once. [Aaboe 1964, 30-31]

Whether or not this theorem, or variants on it, accounts for exactly all the triples in t
table (see Table 4), there are several strong arguments against Plimpton 322 having
generated directly fronp andq.

First, Neugebauer and Sachs noted that the valupsaofiq were all to be found in the
standard reciprocal tables (Table 5), except 2 05 (row 4), which was the normal starting p
for an extension of those tables. With 44 different numbers in the table, the scribe wo
have 44x 43/2 = 946 pairs to choose from. Now, supposing the scribe was familiar wit
the idea of odd and even (for which concept there is no Old Babylonian evidence), he cc
eliminate a further 1% 11/2 = 66 possible pairs of odd numbers from his choices, leavin
880 available starting points. And if we suspend our historical judgement even further

10 But note that the last line of the table does not fulfil this condition, unless we take the reduced set (28, 45,
and make’ = 28,b’ = 45, instead of = 45,b’ = 28 (andp/q =3;30, clearly outside the decreasing sequence).
Much effort has been expended by several scholars on determining the restrictions the ancient scribe “must”
placed onp andq.
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TABLE 5
The Standard Table of Reciprocals

2 30 8 730 16 3 45 27 213 20 45 1 20 104 56 15

3 20 9 640 18 3 20 30 2 48 1 15 112 50

4 15 10 6 20 3 32 152 30 50 1 12 115 48

5 12 12 5 24 2 30 36 140 54 1 06 40 120 45

6 10 15 4 25 224 40 1 30 11 121 44 26 40

aThis consists of reciprocal pairs for all one-place regular numbers, plus the pairs for the squares of 8 a
(the squares of 1-6 and 10 are already in the list). Optionally, the table may also include the three pairs bet
64 and 81 but these are all reversed repetitions of pairs which occur earlier in the table.

a moment and imagine that the scribe was familiar with the idea of coprimes, he woulc
left with a mere 159 admissible pairs. How would the scribe have known which fifteen
choose? Or are we to assume that he worked through them all? It has been pointed ou
the ratio ofp to g descends steadily through the table from 2;24 to 1;48 (see the last colu
of Table 4), but we are still left wanting an explanation as to how those ratios were fot
and sorted.

Second, and perhaps more seriously, any convincing contender for an explanatio
Plimpton 322 must take the order of columns into account (Criterion 6, above). Column
Plimpton 322 as extant (containing values qi{@ g2)/2pq]? under this scheme) is quite
extraneous to the calculation scheme proposed. Because it occurs to the left of Colum
and Il (p? — g2 and p? + g2 respectively) we should expect it, according to the usua
grammar of Old Babylonian mathematical tables, to contain calculations intermediate
the results in Il or lll or both. Plausible candidates mightgdeor g2, for instance. But
instead we have results apparently derived from Colum#tINeither can the heading
of Column | be made to fit th@, q interpretation. Even Neugebauer and Sachs’ hesita
attempt at translation came up with “Thekiltum [untranslatable] of the diagonal which
has been subtracted such that the width” They admitted, “We are, however, unable to
give a sensible translation of this passage leadindff¢d> — b?)” [Neugebauer & Sachs
1945, 40]. According to Criterion 6, the ordering of Column | must arise as a conseque
of the numerical ordering of the column(s) preceding it—but clearly neither gb tvedq
columns of Table 4 (which are supposedly the missing columns of the tablet) is in a so
numerical order.

Third, what of the errors in the table (cf. Table 2)? Discounting the four mistakes whi
probably occurred in the transfer of data from rough calculating tablet to the clean c
which is Plimpton 3222 we have to explain how they might have arisen. Much has bet
said by others on the three nontrivial errors but the crux of the argument, according tc
proponents, lies in the explanation of line 11l 2, which has no simple numerical relationsl|
to the correct valueg? + g2 in the p, q theory):

11 on similar grounds we cannot assume that the missing columns contained the long sides—unless wi
show that it was a starting point, by-product, or step along the way to calculating the two extant elements.

12yr 11l and OB scribes were trained to destroy their rough calculations, either by overwriting or by eras
the tablet on which they were written [Powell 1976, 421; Robson 1999, 10].
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It seems to me that this error should be explicable as a direct consequence of the formation of the
numbers of the text. This should be the final test for any hypothesis advanced to explain the underlying
theory. [Neugebauer 1951, 50 n. 20]

Gillings [1953, 56] and Neugebauer [1951, 50 n. 20] agree that the extant value arose fi
a cumulative series of errors. First, for reasons unexplained by Gillings or Neugeba
the scribe chose to calcula® + g2 not as a simple sum of two squares (¥ @427?)

but as p + )2 — 2pg. However, in finding the second element he failed to multiplypby
stopping at g (or alternatively takingp = 1 00, not 1 04). Then, instead of subtracting the
resultant 54 from (1 04- 27¥ = 2 18 01 as required, he added it to arrive at 3 12 01. I
short, we are asked to believe that, as well as making an unremarkable arithmetical e
the scribe first failed to use the valuespst g2, and 2oq which he must already have found
in determining Columns | and I, either here alone or throughout the whole tablet, in t
most direct method available; and then made a mess of the more complicated altern:
(but solely in this line), adding where he should have subtracted.

Price [1964, 9], on the other hand, believes that the scribe did take the gfrect?
route, but having safely calculated that 1°G4 1 08 16 he must have incorrectly taken
272 =2 03 45= 27 x 25x 11. Why or how the scribe should have done that, Price
cannot say.

In short, thep, q theory has these weaknesses: it is over-reliant on mathematical kno
edge for which there is at best dubious corroborating historical evidence; it grievou
contravenes the strong conventions of OB table-making by failing to provide an ordered
at the beginning of the table; it fails to explain the Column | heading, the position of Colun
lin the table, or even its occurrence at&land fails to account simply and convincingly for
the nontrivial errors which appear in Plimpton 322. In other words, it fails to satisfy Criter
1-3 and 5-6 and does not engage with Criterion 4; Criterion 5 is discussed further bel
On these grounds we can no longer considerttgptheory a satisfactory interpretation of
Plimpton 322.

RIGHT ANGLES AND WRONG ANGLES: CIRCLE MEASUREMENT
IN THE OLD BABYLONIAN PERIOD

So much, for the moment, for how the table might have been composed. What of
supposed function? One of the most popular theories (tending to crystallise in unp
lished manuscripts and short discussions in the general histories [e.g., Joyce 1995; Cali
1999, 35-36]) is that Plimpton 322 represents a trigonometric table of some type. T
interpretation—which should make anyone with a passing knowledge of the post-Ptolern
development of trigonometry feel more than a little uncomfortable—appears to be the
tard offspring of a passing remark made by Neugebauer and Sachs:

Formulating the problem with respect to the triangles, we can say that we start out with almost half a
square (because the valuetofl which corresponds to the first line is 0;59,30) and gradually diminish
the angle betwednandd step by step, the lowest value being almost exactty Bdeugebauer & Sachs
1945, 39]

13 see already Buck [1980, 343].
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Nowhere, however, in their concluding discussion of “historical consequences” did tt
mention “trigonometry” or “angle,” but kept their comments to the (equally dubious) “pure
number theoretical character” of Plimpton 322 [Neugebauer & Sachs 1945, 41]. Neugeb
reworded these comments slightly later on but he still refrained from concluding that
table was in any way trigonometric in character:

If we take the ratido/| for the first line we find 1,582,00= 0;59,30 that is, almost 1. Hence the first

right triangle is very close to half a square. Similarly, one finds that the last right triangle has angles
close to 30 and 60. The monotonic decrease of the numbers in Column | suggests furthermore that the
shape of these triangles varies rather regularly between those two limifS.ljis observation suggests

that the ancient mathematician was interested not only in determining triples of Pythagorean numbers
but also in their ratiosl /1. [Neugebauer 1951, 38]

Elsewhere | have argued that all Old Babylonian area-geometry is based on defining c
ponents: external lines (which may be straight or curved) from which the area of that fig
is defined and calculated [Robson 1999, 47—-60]. In many cases, the names for the def
component and the figure itself—by which | do not meanatea of the figure—are iden-
tical. Both the circle and the circumference are called in Old Babylokipatumfrom
the verbkapapum‘to curve.” Both the square and its side anghartumfrom the reflexive
stem ofmakarum“to be equal and opposite”’—as we have already seen—and the rectar
and its diagonal ardliptum from salapum*“to strike through” (but of course, in this last
case, a diagonal does not uniquely define its surrounding rectangle; it only defines the
figuration as the [simplest] figure possessing a diagonal, i.e., a rectangle). The conce
identity of the (two-dimensional) circle and its (one-dimensional) circumference is revea
not just in the terminology, however, but also in the means by which circles were dealt w
geometrically.

Two nice examples of OB circles can be seen on two clay tablets now owned by
University of Yale (YBC 7302 and YBC 11120 [Neugebauer & Sachs 1945, 44]; probat
from Larsa). The tablets themselves are circular in shape—a little like large biscuits, aro
8 cm in diameter—which suggests strongly that they were written by students, as ro
work [Robson 1999, 10-12]. In modern transcription they look as shown in Fig. 2. T
numbers on the first circle are easy to read: as they are all less than 60 we can treat
like modern decimals. We can see immediately that & and that 45= 5 x 9. Because
45 is in the middle of the circle, we can guess that this is meant to be its area (which
will call A), and we can guess too that either 3 or 9, on the outside of the circle, is me
to be its circumference (which we will cat). We know thatA = r?, but we have no

3 130

9 [2 15]

FIG. 2. Two Old Babylonian circles, YBC 7302 and YBC 11120 (after Neugebauer & Sachs [1945, 4
drawing by the author).
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radiusr marked on the circle. We also know that 271, so—by somenodernalgebraic
manipulation—we can see that= c?/4x. So it looks as through 3 is the length of the
circumference, and that 9 is its squarg,

Substituting these values into our formula, we have

A= — =~ 93=9x0;05=0;45,

or 3/41% Checking this formula against the second circle, with1;30, gives

_ L3¢ 215 _ 2:15x 0:05= 0:11 15
4 4x3

A

or 11/60+ 15/3600= 3/16 in modern fractions. In other words, a circumference whicl
is half the length of the first surrounds a circle with a quarter of that first area, as we wo
expect®

Apart from the arithmetical difference of having to work in base 60, these two exampl!
illustrate beautifully a fundamental distinction between the modern circle and the ancie
Whereas we are taught to conceptualise the circle as a figure generated by a radius rot
around the centre (as with a pair of compasses, and our forfetarr?), in the Old
Babylonian period it was seen as the figure surrounded by a circumference. There
several other contemporary texts which corroborate this interpretation. For instance, Y
7997:19-11 3 ([Neugebauer & Sachs 1945, text Pa]; probably from Larsa) gives instructic
for finding the area of a circle with the same circumference as the second examplé%boy

1 30 ki-[ip-pa]-tam/ [tu]-uS-ta-ka-al/ a-na5 tu-ub-ba-al-ma/ 11 15i-li-a-ma
You square 1;30, the circumference. You multiply (the result) by 0;05 and 0;1115 will come up, and
(... the text continues).

Haddad 104 (iii): Il 26-8 ([Al-Rawi & Roaf 1984, 188-195, 214]; from Mé&-Tur an) show
that the circle’s area is calculated from the circumference, even when the diameter is kn
(inthis case the subjectis a cylindrical log with longer diameter at the bottom than at the tc

1 40 mu-uh-hi i-&im 8u-ul-li-is-ma/ 5 ki-pa-at i-§-im i-1 / 5 u-ta-ki-il-ma25i-li / 25a-na5i-gi-gu-
bé-em iSi-ma/ 2 05A.84 i-li

Triple 1,40, the top of the log, and 5, the circumference of the log, will come up. Square 5 and 25 will
come up. Multiply 25 by 0;05, the coefficient, and 2;05, the area, will come up.

14 3 was a standard approximatioritan Old Babylonian mathematics: although it was known to be inaccurate
it was easy to calculate with. In certain circumstances the much more accurate 3;07 308anaslused. The
“coefficient of a circle,” 0;05, was listed in most known Mesopotamian coefficient lists [Robson 1999, 34-38]

15 Cf. AUAM 73.2841 [Sigrist 2001, no. 224], on a damaged square tablet which shows, like YBC 7302, a cir
inscribed with the number 45. The number 3 is written twice, in vertical alignment, to the left of the circle, wi
the number 9 in the bottom left hand corner of the tablet. Although unprovenanced, the tablet is certainly OB

16 The mark / shows the division of physical lines on the tablet. Square brackets [ ] mark signs that are comple
missing.
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FIG. 3. An Old Babylonian circle drawn with compasses (detail of BM 15285, drawing by the author).

Although the diametetallum regularly crops up in OB problems about circles—and, on
could argue, it was necessary in order to conceive of a circumference or circle as a |
whose opposite points are all equidistant—the ragitgumis never mentioned’ That is
not to say, though, that the radius played no partin OB geometry. We find it, for instance
problems about semicircles. In those contexts, however, it functions as the short transv
of the figure, perpendicular to the diameter or long transvetrai&m. Indeed, this is the
function of thepirkumin the context of all OB geometrical shapes [Robson 1999, 38]; it |
never conceptualised as a rotatable line.

Figure 3, from a “text-book” on finding the areas of geometrical figures, shows a cirt
inscribed in a square (BM 15285 [Robson 1999, 208-217]; probably from Larsa). It gi\
clear evidence that circles could be drawn with compasses from a central point. My argun
is certainly not that the radius was not known in the Old Babylonian period, but simply tf
it was not central to the ancient mathematical concept of a circle.

In short, to treat Plimpton 322 as a trigonometric table of any kind does extreme violel
to Criteria 1-2. The Old Babylonian circle was a figure—like all OB geometrical figures-
conceptualiseffom the outside inln such a situation, there could be no notion of measul
able angle in the Old Babylonian perid8iWithout a well-defined centre or radius there

17 The sole exception is the sequence of coefficientSM$3 [Bruins & Rutten 1961, texte 3] from Susa:

D 2 5icl.cuB 82 GUR 0;05, the coefficient of a circle.

D 3 20paL SaGUR 0;20, the diameter of a circle.

D 4 10 [pi]-ir-ku $a cUR 0;10, the radius of a circle.

But even here the coefficient of the radius (“short transversal”) is given last, after the area and diameter. T
three entries in the list start a long section recording the coefficients of the areas, diameters (long transver
and radii (short transversals) and other components of seven different geometrical figures. In each case the
transversal is considered to be fixed perpendicular to the diameter and measured from the diameter to the per
of the figure [Robson 1999, 199-200].

18 The illustration does show, though, that there was a concept of “quasi-perpendicularitygrerr-less
right-angledness. The squares on the tablet are definitely skew: it is not my drawing skills at fault, but the an
scribe’s conception of squareness. We do not know exactly what the Old Babylonian perception of perpendicul
was, but it seems to have been something like the range of angles for which the “Pythagorean Rule” is reaso
accurate [cf. Hayrup 1999a, 403].



HMAT 28 REASSESSMENT OF PLIMPTON 322 183

could be no mechanism for conceptualising or measuring aktbesl therefore the popular
interpretation of Plimpton 322 as some sort of trigonometric table becomes meanfigles
Any plausible hypothesis about the creation of Plimpton 322 must therefore see the mi
or-less linear decrease in the Column | values not as a goal of the text but as an incidenta
product with no quasi-trigonometric significance for its ancient creator. Itis more historica
sound to view the starting point of the table as a triangle which is more-or-less half a squ
and the (unattained) end-point as a triangle with long side and short side in either of
ratios 3:2 or2:1.

RECIPROCAL PAIRS AND CONCRETE GEOMETRY: AN ALTERNATIVE
INTERPRETATION OF PLIMPTON 322

Jens Hgyrup’s ground-breaking work over the last decade on the terminology of ¢
Babylonian “algebra” has revealed an underlying “cut-and-paste” or “naive” geomet
methodology, exemplified by the problem on YBC 6967 ([Neugebauer & Sachs 1945, t
Ua; Hayrup 1990a, 262—-266]; probably from Laréh):

[ic1.81] e-liiai 7i-ter / [ic1] Uicl.BI mi-nu-umy/ at-ta7 Saicl.si / ucu Gl i-te-ru / a-nasi-na he-jg-ma3 30 /
3 30it-ti 3 30 /3u-ta-ki-il-ma 12 15/ a-na12 15%a i-li-kum/ [1 A.8]-la-am g-ib-mal 12 15/ [is.si
1] 12 15mi-nu-um8 30 / [8 30u] 8 30 me-he-eBu i-di-ma/ 3 30 ta-ki-il-tam/ i-na i5-te-eni-su-uh/
a-na -te-en Bib / iS-te-enl2 Sa-nu-umb / 121c1.81 5 i-gu-um

19The slope of walls (and other structural lines which deviate from the vertical) is described in formulatio
such as-na 1 kus % KUS kO 1.k0-ma‘“in 1 cubit (height) the slope slopeg3 cubit” said of a wall (YBC 4673
(xii): IV 12 [Neugebauer 1935-1937, Il 29-34; Robson 1999, 90]; from Larsa?@f kus 1 30kUS SA.GAL “in
1 cubit (height) the slope is 1;30 cubits” said of a grain-pile (BM 96958M 102366+ SE 93 (xv): 1l 28-29
[Robson 1999, 222]; from Sippar).

20 As Jens Hayrup (personal communication) points out, “the trigonometric claim is as meaningless as a ¢
that the sequence 1-2—-3—4 in itself, and with no corresponding angles listed, constitutes a table of tangents

21 see also VAT 8520 ([Neugebauer 1935-1937, 1 346—351]; probably from near Larsa) for two further proble
on reciprocal pairs, with more complicated starting conditions.

The possible attribution of these two tablets to the Larsa area needs further explanation, as Goetze assigne
to“northern” (YBC 6967) and “Uruk” (VAT 8520) provenances [Neugebauer & Sachs 1945, 149-150], followed |
Hayrup [1999b, 26—30]. VAT 8520 belongs to an orthographically, terminologically, and museologically cohert
group of 14 tablets (Goetze's “4th Group”) which has spelling conventions similar to those of his “3rd Group,” mc
of whose 14 members were said by dealers to come from Uruk [Neugebauer & Sachs 1945, 149 n. 356]. VAT 8
the only provenanced tablet of “Group 4,” however, was claimed by its dealer to originate in Larsa [Neugebe
1935-1937, | 340]. Whichever attribution is correct—and neither is entirely watertight—Uruk (modern Wark
31°18 N 45°40 E [Roaf 1990, 232]) is less than 25 km upstream from Larsa on the ancient Iturungal canal off 1
Euphrates river. Uruk was part of the Larsa polity between 1804 and 1762 BCE, when both cities were capt
by Hammurabi's Babylon [Roaf 1990, 112; Kuhrt 1995, 109] and is certainly to be counted as within the envirc
of Larsa (Criterion 2).

Goetze’s “5th Group,” of which YBC 6967 is one of just three members [Neugebauer & Sachs 1945, 1E
does not stand up to close scrutiny, however [cf. Hgyrup 1999b, 26]. YBC 6967 has much in common with “
Group” tablets, in both orthography (only the writifigsu-uhfor usuhsubtract” (rev. 2) differs from “4th Group”
0-s0-uh [cf. Neugebauer & Sachs 1945, 149-150]) and terminology (sharing the use of theasmHumfor
subtraction, syllabically writtemi-nu-unf'what?” introductoryat-ta“you,” the wordtakiltumwhich is discussed
further below, and the treatment @fsi; “square (root)” as a noun). Heyrup particularly associates many o
these terminological features with his “possible subgroup 4B” comprising VAT 8512, YBC 8600, and YBC 86
[Hayrup 1999b, 27-30]. It is, in short, more likely that YBC 6967 is to be provenanced in the Uruk—Larsa regi
than in some ill-defined “northern” area.
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FIG. 4. “Completing the square” for YBC 6967 (drawing by the author).

[A reciprocal] exceeds its reciprocal by 7. What are [the reciprocal] and its reciprocal? You: break in
half the 7 by which the reciprocal exceeds its reciprocal, and 3;30 (will come up). Multiply 3;30 by 3;30
and 12;15 (will come up). Append [1 00, the area,] to the 12;15 which came up for you and 1 12;15
(will come up). What is [the square-side of 1] 12;15? 8;30. Put down [8;30 and] 8;30, its equivalent, and
subtract 3;30, th&akiltum,from one (of them); append (3;30) to one (of them). One is 12, the other is
5. The reciprocal is 12, its reciprocal 5.

The product of a reciprocal pair is, by definition, 1 (or any other power of 60). The proble
setter here has assumed that reciprocals are the same order of magnitude, and tha
product is 60, in order to get an integer difference of 7 between the two unknowns. -
problem is solved by “completing the square” (Fig. 4), with the instructions given in a ve
concrete fashion.

The two unknown reciprocals delimit a rectangle of area 1 00. The difference betw
them is measured off on the long side of the rectangle, and halved. This portion of
rectangle is torn off and pasted on underneath, to form an L-shaped figure of the same
as before. But the two inner arms of the L now define a square of length 3;30 (and &
12;15). The outer arms of the L must therefore describe a square of area 12005=
1;12;15. This large square must have length 8;30, so the lengths of the original recta
(our unknown reciprocals) must be 8;303;30= 12 and 8;30- 3;30= 5 respectively.

What does this have to do with Plimpton 3227 The solution to YBC 6967 describes
formation of a large square from the juxtaposing of a small square space and a shaj
area 1 00. If we redraw this area 1 00 as a middle-sized square with lgigh® we have
a particular case af?> = b? +12. In other words, in the course of solving a problem abou
finding a reciprocal pair given their integer difference, we have generated a “Pythagore
triple: 8;30,.,/60, and 3;30. Admittedly this is a rather difficult triple to deal with in Old
Babylonian arithmetic, because the second element is irratiogél R and susceptible
only to approximate calculation. But if we revert to the normal definition of reciproc
pairs, whereby their product is 1 (or some even power of 60), then our method will serv
generate “Pythagorean” triples nicely.

If we make the necessary adjustments to the reciprocal pair in YBC 6967—nam
defining their product as 1, not 60—we get a difference of1205= 11;55. Half of this
is 5;57 30, our smaller square-side. Square this number and add 1, to give 36;30 06 15.
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the square-side: 6;02 38 So we have generated the triple 6;02 30, 5;57 30, and 1. We c:
now multiply out by products of 2, 3, and 5 to get a triple with the shortest possible strin
of numerals:

6;02 30 5;57 30 1 x 2 (because the first two numbers terminate in=30)
12;05 11;55 2 x 12 (because the first two numbers terminate ig5)
225 223 24

Or we can equally well take 5 0;12= 4;48 as our starting point. Half of 4,48 is 2;24.
Square this and add 1 to give 6;45 36. Its square-side is 2;36. So our triple is 2;36, 2
and 1. We can try multiplying out again:

2;36 2;24 1 x5 (because the first two numbers terminate in products o£12)
13 12 5

Neugebauer and Sachs [1945, 41] had already pointed out that it was possible to gen
the numbers found in Plimpton 322 from reciprocal pairs, and they listed the first fo
(They did not believe, however, that it was the method used; the argument is taken
again in the following section.) The full set of calculations is given in Table 6. The fir:
two columns contain the reciprocal pairs; the third and fourth their semi-differences &
semi-sums (corresponding to the Aland 8 ¥2 in Fig. 4). The fifth column (Column |
on Plimpton 322 as extant) contains the areas of the large squares, found (if, as in Y
6967, the reciprocals are unknown) by adding 1 to the square of the semi-difference
(if the reciprocals are known) by squaring the semi-sum. The next two columns show
two square-sides (small and large) multiplied out by successive factors to get the sho
possible strings (Columns lI-lll of Plimpton 322), while the penultimate one shows tt
products of those factors, namely the corresponding long sides. As in Column IV of t
tablet, the final column simply serves as a line-counter.

EARLIER PROPONENTS OF THE RECIPROCAL THEORY

The theory set out here is not new and | certainly would not want to claim it for myse
It was first proposed by Bruins [1949; 1955] soon after the tablet was published, tt
reappeared in various guises some 25 years later in three apparently independent st
by Schmidt [1980]; Voilsapud Buck [1980]; and Friberg [1981], although none had the
supporting linguistic and conceptual evidence cited here but presented it in modernis
algebraic form like Neugebauefs q theory. So why has it been largely ignored by the
authors of generalist histories of mathematics, and why should it no longer be?

Bruins faced two major obstacles to the acceptance of his theories: he had extraordin:
difficult personal relationships with other scholars [Hgyrup 1996, 15] and at times ma
startlingly sloppy mistakes [e.g., Fowler & Robson 1998, 375 n. 14]. His writing styl
is often almost incomprehensible and riddled with sweeping generalisations, exclama
marks, and venomous hyperbole. For instance, Bruins [1955, 118] claims, outrageot
that Plimpton 322 is a complete tablet in order to justify his contention that the first colur
does not begin with 1s. In the same article [1955, 119] he claimathétplace reciprocal

22 see Fowler & Robson [1998] for a discussion of the standard OB method for finding square-sides. This Iz
square-side is in fact simply the average or semi-sum of the two reciprocals involved, as can be seen in Fig.
there would have been no need to actually perform the extraction if the reciprocals were known.
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pairs between 2 24 and 1 48 are accounted for in the tablet; they are not (see below). Ol
same page he claims that the square roots in Columns Il and Il would have been foun
inspection for common square factors. Not only is this an extremely impractical m&thoc
but for historical support it depends on a tablet that he had published extremely badly
incompletely the previous year [Bruins 1954, 36gain Bruins [1955, 119] tries to wring
the meaning “reduced value” out of the wardthartum(cf. above)—and all this in a poor
print-quality Iragi journal available only in a few specialist Assyriological libraries. Non
of these factors were likely to encourage his colleagues to treat his proposal seriously.

Schmidt [1980] got close to the scenario supported here—arguing in effect that Plimp
322 concerns not Pythagorean tripfes sebut the sums of reciprocal pairs scaled up by
a factorl—but presented perhaps the weakest historical analysis. For a start, it is appa
that the subject of his study is not an Old Babylonian tablet but an error-free table of Inc
Arabic numbers in the sexagesimal system. Plimpton 322 is first described solely a:
text containing Pythagorean numbers” [Schmidt 1980, 4] with no indication of its dat
provenance, or even physical appearance and is referred to thereafter as “the Plimpton
[Schmidt 1980, 4 anghassim]. Indeed, “the Plimpton text in its present form” [Schmid!
1980, 4] is shown in his Table 1 on the following page. Its headings consist solely of t
Roman numerals | to IV, under which are four rows of data, three rows of ellipses, and a fi
row of data. His message is that the material, historical form of Plimpton 322 is irreleva

Later in the article, when Schmidt wishes to provide further support for his adaptation
Bruins’ reciprocal theory, he states that “[s]uch a system actually occurs in the text mate
(Neugebauerivathematische Keilskrift-Tex{sic], vol. I, p. 106)” [Schmidt 1980, 9]. It
is not the museum number and publication details of a cuneiform tablet that he cit
but a German “text” of the 1930s. Neugebauer [1935-1937, | 106], to which he refe
us, is neither transliteration nor translation of a Mesopotamian mathematical tablet,
even a cuneiform copy or photograph, but a mathematical discussion headed “Quadrati
Gleichungen fur reziproke Zahlen (Rs. 10 bis 27).” Turning back ten pages to the start of
chapter, we discover that the discussion concerns four problems on AO 6484, a tablet
Uruk purchased by the Louvre—and that its date is “Seleukidisch” [Neugebauer 1935-
1 96].2° In other words, Schmidt admits as support for his argument mathematics from
Seleucid (i.e., Hellenistic) period, roughly a millennium and a half later than the date
Plimpton 322 and younger even than flements

23] tried it for all values on Plimpton 322: it is virtually impossible. To factor out squares by inspection,
Bruins wants, one has to choose factors at each stage, test them, and backtrack if they are wrong (which in my
they often were). On the other hand, to find reciprocals using “The Technique,” (page 29) or to find square-s
(above), one chooses a suitable starting approximation and continues until done: it does not really matter
accurate the approximation is, or whether it is an over- or underestimate; one gets there in the end. After the i
choice no further decision needs to be taken, except when to stop.

24The tablet, IM 54472 (unprovenanced), is published without photograph or copy but solely in defect
transliteration so that it is impossible to determine which cuneiform signs were used to write the text; the sh:
size, and physical condition of the tablet; or how accurate or plausible Bruins’ reading of it is.

25n fact the scribe named in its colophon, one Anu-aba-uter, is known to have been active in the early se
century BCE [cf. Hayrup 1990a, 347 n. 180].

26 Nevertheless, as Jens Hgyrup (personal communication) comments, AO 6484 provides interesting evid
important [or pervasive?] than ascertained by the two surviving texts taken alone”. Cf. Hayrup [1990a, 347—
n. 183] on the arithmetical terminology and conceptualisation of the reciprocal-pair problems in AO 6484.
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Schmidt’s ignorance of the historicity of his subject matter pervades the article. He d
not engage with, or even acknowledge the existence of, the errors on the tablet, while
headings (or rather the two words “width” and “diagonal”) are mentioned only in the very I
line [Schmidt 1980, 13] during an unconvincing last-minute attempt to fit them into his inte
pretation. His final reconstruction is a table eight or nine columns wide [Schmidt 1980, 13
which would mean restoring to Plimpton 322 a total width of 25—-30 cm and a sharply as)
metric curvature. (Schmidt, though, does not register the physical implications of his thec

He is, however, able to give some internalist, mathematically orientated justifications
his proposals:

We notice that in the explanations given by Neugebauer and Sachs, and E. M. Bruins thelnumper
plays arather significant role. In our explanation the nurhidees not occur explicitly. Nor doésccur

explicitly in the text proper, and in this respect our explanation agrees better with the text than the two
previous explanations. [Schmidt 1980, 10-11]

Voils’ work, although signaled by Buck [1980, 344] to appeaHistoria Mathematica,
never actually made it into print, so it is not always possible to disentangle his theory fr
Buck’s (mis)interpretation of it. Like Schmidt, Buck and Voils propose that Plimpton 32
concerns the sums of regular reciprocal paiandx®:

[Tlhe entries in [in Columns I-Il of] the Plimpton tablet could have been easily calculated from a
special reciprocal table that listed the paired valiemdxR. Indeed the numbers [in Columns 11-11]
can be obtained from + xR merely by multiplying these by integers chosen to simplify the result and
shorten the digit representation. [Buck 1980, 344]

But, again like Schmidt, Buck and Voils have difficulty in handling the historical dat:
The unidentified mathematical problem they present (which is presumably YBC 6967
mistakenly provenanced to the city of Nippur. More seriously, they fail to state that
such “special reciprocal table” actually exists or to show how such a reciprocal table mi
have been calculated. Moreover, while pointing out thatithg theory fails to explain the
presence, position, and contents of Column | on the tablet [Buck 1980, 343], they car
give a convincing justification for the presence of Columns Il to Ill and once more do r
attempt to deal with the headings.

The following year Friberg [1981a] produced the most detailed analysis of the table
date. His article stands on the cusp of the old era and the new: on the one hand fier
mathematical and modernising with regard to the content of the tablet, and on the o
extremely perceptive about authorial intention. He summarises his theory as follows, v
a, b, andc equivalent to out, b, andd:

Itis easy to verify that the listed values [in Plimpton 322]are precisely the ones that can be obtained
by use of the triangle parameter equations

b=ab, c=ac 6:%@/—0 6:%(t/+t)

if one allows the parameté&rwith the reciprocal numberf = 1/t) to vary over a conveniently chosen
set of 15 rational numbets= s/r, and if the multipliera is chosen in such a way thiaandc become
integers with no common prime factors. [Friberg 1981a, 277]

Like the theories of Schmidt and Buck/Voils, this explanation boils down to using reciproc
pairs to generate the table. But Friberg recognises that the reciprocals must themselves
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been generated and sets out to do so himself. Rather than searching the OB mathem
corpus for a toolkit of culturally appropriate techniques (cf. pages 26—29) he simply sho
us how he has done it:

By writing the parameterand its reciproca ast = s/r andt’ = r /s, and by letting the pair( s) vary

over all admissible parameter pairs (coprime pairs of regular sexagesimal integers) within a bounded
“strip” in the (r, s) plane, one can generate an arbitrarily large set of parameter values in a systematic
and straightforward way. This type of procedure has been followed in the construction of the table in

Figure 2.2. [Friberg 1981a, 288]

“Figure 2.2" [Friberg 1981a, 286] is a log—log graph! This is “rationalist reconstruction
at work: nowhere in this discussion does Friberg acknowledge that an OB scribe may h
had very different ideas about what constituted a “conveniently chosen” set of numbers
contrast, he then goes on to announce that the contents of Columns Il

can be obtained fairly easily from the valueskofindc, using only methods that would have been
available also to a mathematician of the Old Babylonian period [Friberg 1981a, 289],

so it is not clear why he did not take this approach to the reciprocal pairs too.

After a heavily algebraised but mostly successful account of possible arithmetical te
nigues behind, and therefore the nature of the errors in, Plimpton 322, Friberg moves o
tackle “the purpose of the text” [Friberg 1981a, 299-306]. Like all his immediate predec:
sors he is not equipped to deal with the internal evidence provided by the headings [Frik
1981a, 300] and like Schmidt inappropriately cites the four reciprocal-pair problems of t
Hellenistic tablet AO 6484 as his primary external evidence [Friberg 1981a, 303]. The pa
concludes with lengthy “reflections on the origins of the ‘Pythagorean theorem™ [Fribe
1981a, 306—315], working through all Mesopotamian evidence then known for proble
about right-triangles.

In sum, the reciprocal theory as presented by Schmidt, Buck/Voils, and Friberg had
apparent advantages over the mainstrgam interpretation. Although it purported to be
more consistent with OB mathematical culture (Criterion 2), the historical evidence w
handled clumsily. Schmidt in particular was chronologically and artefactually insensiti
(cf. Criteria 1 and 4). The non-numerical contents of the tablet were practically ignor
(cf. Criterion 5), and while the existence and placement of the errors (Criterion 3) a
of Column | could be justified, there was now no satisfactory explanation for Colum
[I-111 (cf. Criterion 6). On the face of it, there was little to choose between reciprc
cals andp, q generators—except that the latter theory had the authority of Neugebal
behind it.

So what does make Bruins’ reciprocal theory more convincing than the stapdpgen-
erating function—or, indeed, the trigonometric table? | have already showed that its star
points (reciprocal pairs, cut-and-paste algebra) and arithmetical tools (adding, subtract
halving, finding square sides) are all central concerns of Old Babylonian mathematics:
sensitive to the ancient thought-processes and conventions in a way that no other has
tried to be. For example, in this theory the values in Column | are a necessary step tow.
calculating those in Column Il and may also be used for Column Il. And the Column
values themselves are derived from an ordered list of numbers. In other words, as it
been presented so far, the theory satisfies Criteria 1, 2, 3, and 6 reasonably well. But t
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remain several outstanding concerns to be answered:

What of the damaged heading in the first extant column?
Do the controversial 1s in Column | exist or not?

Can the errors in the tablet be explained?

How would the reciprocal pairs have been found or known?
Are any entries missing from the tablet, and why?

What would have been in the missing portion of the tablet?
What are Columns Il and Ill for?

Why was Plimpton 322 written?

Let us deal with those questions in the order given.

COLUMN I: THE WORDS AND THE ONES

So, what of the mystery heading over the first column and the controversial 1s? We ki
(page 8) thatthe 15 rows beneath it contdtherthe ratio of the square on the short side to the
square on the long siae the ratio of the square on the diagonal to the square on the long si
(depending on whether you believe in the existence of the 1s at the beginning of the coll
or not). According to our reciprocal theory (cf. Fig. 4), this is equivalent to the area of t
imaginary small square or the area of the large square (composed of 1 plus the small sqt

Neugebauer and Sachs read the heading as

[ta]-ki-il-ti si-li-ip-tim / [Sa in]-na-as-a-hu-0-masaGi-...-0
Thetakiltumof the diagonal which has been subtracted such that the widtffNeugebauer & Sachs
1945, 40]

Now, siliptum “diagonal” (here in the genitive case) and the Sumerogsasfor putum
“short side” we have already met in the Column Il and Il headings. Between them
the relative pronousa“who, which, whose, whom,” and the veibnassaH'is torn out”
from the passive stem of the venlasashum‘to tear out’. The verb has two suffixes: the
subjunctive -ugoverned by the relativéa) and the conjunctiomrma“and then,” “so that.”
We are left with two difficult words: a noun in the construct at the beginning of the headi
and a subjunctive verb in the third person at the end. Beqaitaenis written as a logogram
with no case ending, we cannot tell if it is the subject or object of the mystery verb. T
eagle-eyed reader will have already spotted 83Ki-il-tamin YBC 6967 (p. 17), where, in
the accusative case, it refers to the length of the small square which is imagined in the Ic
right corner of the rearranged rectangle in Fig. 4. But according to our reciprocal the
the contents of Column | are all squares, not lengths. This is not in itself a problem,
we have already seen that geometrical configurations share their names with their defi
components, and in particular that squares and their square-sides are named identical
itis to be expected that thakilti in Plimpton 322 might refer to the area of a square instea
of a square-side. But we still have a difficulty: in YBC 6967 thequare is the little one, of
the short side, whereas in Plimpton 322 thequare of the diagonal can only be the large
composite square. And that means that we have to restore the 1s at the start of the lir
the remains of the tablet suggest we should.

But even if we accept thaakiltumcan refer to both large and small square we need t
make an adjustment to our heading, because clearly the big square cannot be “torn ot
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anything. If, on the other hand, we insert a vertical wedge for “1” into the damaged part
the tablet, and restote

[ta]-Ki-il-ti si-li-ip-tim / [Sal in]-na-as-@-hu-U-masaci-...-0

Thetakiltumof the diagonal from which 1 is torn out, so that the short side
we have a meaningful (and grammatically correct) first clause: subtract 1 framgeare
of the diagonal and you will get thie-square of the short side, from which the short side
itself can be found.

What doegakiltumactually mean? Huber [1957, 26] tentatively translated it “Hilfzahl”
(helping number), implicitly deriving it from the vertakalum “to help” as the feminine
participletakiltum“helper.” This is, on the face of it, a very attractive proposition. But the
authoritativeAkkadisches Handwterbuch[von Soden 1959-1981, 1306] read&iltum
(nomacron) and translates “bereitstehende (Verfligungs-) Zahl” (“available number”), wt
the extremely thoughtful Hayrup [1990a, 49, 264] retaddtum (with a macron on the)
without translating. Both identify it as a nominal derivative of the vieatium “to keep,
hold.” As might be expected, von Soden’s reasons are primarily philological (and higt
technical), whereas Hgyrup focuses on (similarly technical) mathematical arguments.
they can both be reduced to the fact that the OB verb “to multiply geometrically” (i.e.,
construct a rectangle or square from two perpendicular lines, as in Fig. 4) is probably
causative reciprocal form &hillum, andakiltum(a constructed square) can only be derivec
from the same root. The form of the noun is causative too; it means “something that
been caused to hold (something)"—which, as we would expect, suggests theitittuen
is conceptualised as a square configuration or frame rather than an area or a length.
difficult to find a meaningful one-word English translation which takes into account bo
the mathematical context and the semantic constraints of its grammatical form, but for
moment | suggest “holding (-square),” pending a better sugge&tisihthat remains is the
last verb, whose meaning we can guess at, even if it is difficult to read—the scribe has t
unsuccessfully to squash into the end of the first column and it has ended up spilling i
the second line of Column II. The word must signify something like “results,” the standa
OB mathematical terms for which atmmar“you see,” the second person present tens
of amarum” “to see”; andlli, the third person present @lim“to be(come) high” which
is normally translated “comes up” in this context. We can immediately exclude the fil
of these options, as all second person verbs are prefa«gavhich looks nothing like the
i-shown clearly on the tablet). We can explain the certain finals another subjunctive
marker governed by the relativisgaithat we have already restored, so we are now looking
for traces on the tablet that would fit witlfiu or contractedll 0.

Legitimate syllabic spellings are shown in FigzZ®Bothil andli are long signs, too long
to together fit the traces on the tablet (a); whilalone is too simple a sign to account for all

27 This restoration was suggested first by Bruins [1949; 1967, 38], even though he did not believe in the existt
of the initial 1s! It was also discussed by Price [1964, 8] who, hampered by his ignorance of Akkadian, wante
understandac as “long side” ancdhasashumas “to select,” both of which meanings are impossible.

28 The wordtakiltumis also found with the same meaning in two tablets from the Larsa region: VAT 8512: 1 1
[Neugebauer 1935-1937, | 341], and VAT 8520 (ii): Il 21 [Neugebauer 1935-1937, | 346] (cf. note 21).

29We can exclude spellings with the south#g(=EL) because of the spellingg]-ki-il-ti in the line above. We
can also excludi-li- G andil-lu- i because of the unquestionably preseat the beginning of the word. Spellings
such as-il- 0 break the conventions of Akkadian spelling and are not an OB phenomenon.
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FIG. 5. Legitimate syllabic spellings ofl 0, subjunctive “comes up”: (alil-li- G, (b) i-li- @, (c) i-il-lu- G,
(d) i-lu-U (drawings by the author).

the visible wedges (d), arldlas written insiliptim does not fit them either (b). This leaves
us with spelling (c), and close inspection of the original tablet (or the photo in Neugeba
& Sachs [1945, pl. 25]) shows this to be a good fit, with thand thelu squeezed into
the end of the line, as shown in Fig. 6. In fact, this reading was first proposed by Goe
apudPrice [1964, 8] but not fully explained there. So now we have a grammatically a
mathematically meaningful heading for Column I,

[ta]-ki-il-ti si-li-ip-tim / [Sal in]-na-as--hu-U-masac i-il-lu- G.
The holding-square of the diagonal from which 1 is torn out, so that the short side comes up,

and have thereby fulfilled Criterion 5.

ACCOUNTING FOR THE ERRORS

Now we come to the three nontrivial errors. The square in row Il 13 can easily
accounted for if we assume that Column Il was derived from Column I, as the latter's o
heading explicitly states. The scribe forgot, in this one instance, to find the square side
subtracting 1 from the entry in Column I. So he multiplied slygiareof the short side and
thelengthof the diagonal by successive regular factors to get the numbers shown on
tablet. This conclusion has implications for our interpretation; we shall return to it later.

Both of the remaining errors (double or half the correct value in line 15, and 3 12 01
120 25in 11l 2) can be explained—as Bruins [1955] and Friberg [1981a] both concludec
by independent factorisation gone too far. That is, having found the basic triples (0;37
1, and 1;10, 40 for line 15, and 0;58 27 17 30, 1, and 1;23 46 02 30 for line 2), t
scribe multiplied up each number in the triple to eliminate common factors. For line 151
calculation should have been:

0;37 20 1 1;1040 x 3 because two numbers terminate in multiples of 20

1,52 3 3;32 x 5 because two numbers terminate in 2
9;20 15 17;40 x 3 because two numbers terminate in 20
28 45 53

14l

FIG. 6. The last word of the Column | heading, twice original size (drawing by the author).
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but the scribe apparently doubled the resulting triple in an attempt to further reduce
common factors (to 56, 1 30, 1 46), and forgot to return to the first of these values wher
saw the result was not satisfactory. Similarly, in line 2,

0;58 27 17 30 1 1;23 46 02 30 x 2because two numbers terminate in 30
1;56 54 35 2 2;47 32 05 x 12 because two numbers terminate in 5
23;22 55 24 33;30 25 x 12 because two numbers terminate in 5
4 40;35 448 6 42;05 x 12 because two numbers terminate in 5
56 07 5736 12025

Again the scribe, not certain that he has found the optimum triple, continues to multiply
12:

56 07 57 36 12025 x12
1113 24 113112 16 0500 x12
214 36 48 21814 24 313 00 00

and on reverting to the shortest triple forgets to convert the last of the three. Because
calculation has been done very roughly [cf. Robson 1999, 66, 245-277], he misreads
final three wedges of 3 13 and transfers 3 12 01 onto the good copy.

We have now reasonably satisified Criterion 3.

RECIPROCAL PAIRS AND MISSING ROWS

To judge from the curvature of the extant part of Plimpton 322 [cf. Friberg 1981a, 2
Fig. 1.3], there is probably room for two columns of roughly the width of Columns Il an
[l in the missing portion, thereby adding no more than about 5 cm to the width of the tabl
Let us call them Columns A and B. Let us suppose for the moment that they contained
reciprocal pairs listed in the first two columns of Table 6. As already mentioned, Neugeba
and Sachs were not in favour of the reciprocal pairs playing any role in generating the ta
They stated:

[O]ne can also produce Pythagorean numbers by using one parameatef its reciprocalr where
« = p/qg. But a comparison of the [first] four lines [of pairs] shows immediately that neitheor o
could have been the point of departure but only the simple numbersdg. [Neugebauer & Sachs
1945, 41]

Their argument s, | think, based on the fact that the reciprocal pairs are up to four sexag
mal places long while they knew almost exclusively of tables listing one- and two-place pe
for the Old Babylonian period [e.g., Neugebauer & Sachs 1945, 11-12]. Just four kno
exception¥ generated reciprocal pairs up to 8 or 9 sexagesimal places long by succes
halving and doubling of two-place pairs easily derivable from the standard tables.

This method of finding nonstandard reciprocal pairs is generalised somewhat in Str
(i) from Uruk [Neugebauer 1935-1937, | 257-259; Sachs 1947, 235]: it consists of dividi
the (regular) number given by a (regular) factor—in this case 3—so that a number in

30 UM 29-13-21 [Neugebauer & Sachs 1945, 13-15], CBS 10201, BM 80150, and VAT 6505 [Neugeba
1935-1937, | 23-24; 1 49-50; 1l 52]—the first two from Nippur, the third from Sippar, the latter unprovenance
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standard reciprocal table is reached. Its reciprocal is then multiplied by that same factc
produce the reciprocal of the original number.

Very shortly afterwards, Sachs published a sizable body of Old Babylonian tablets der
strating another method (which he dubbed “The Technique”) for finding the reciprocals
regular numbers [Sachs 194]lt can be summarised algebraically (and anachronistically
in the following way. A sexagesimally regular numhmehas to terminate with some one-
or two-place integem, in the standard list (see Table 5). Call the difference between the
b, so thatc = b + a. Therefore,

"1+b/a’

Explicit instructions for using “The Technique” are given on the unprovenanced OB tak
VAT 6505 [Neugebauer 1935-1937, | 270-273; Sachs 1947, 226-227], and many
examples of its use are now known [Robson 2000a, Table 3]. Let us take 2;22 13 20, f
the second pair in Table 6, as an example of how it works. First, pick out anafrioyn
the standard reciprocal table from the end of the number. We could choose 20, but le
be more ambitious and set= 0,02 13 20, leavindp = 2;20. The reciprocal of 0;02 13 20
is 27. Multiply this byb to give 1 03. Add 1—1 04—and take the reciprocal: 0;00 56 1-
(In our case the pair is in the standard table, but in other cases (and there are OB exar
known) one needs to iterate, taking this last value as ameMultiply 0;00 56 15 by 27
to get 0;25 18 45= 1/c, as wanted.

So, although there are no four-place tables of reciprocals known, it was easily within
abilities of an Old Babylonian scribe to generate regular reciprocal pairs and to sort tf
in order®? And that ascending numerical order in the first column, the universal method
sorting OB tables, accounts for the fact that the extant Column | is ordered while Colur
Il and Il are not.

We are now moving toward a fuller response to Criterion 6. But we have not actue
addressed the question of how the scribe would have found suitable four-place reg
integers, whose reciprocals he could then calculate. This matter is related to the que
of whether or not the table is full. Trivially, it is not: the reverse of the tablet has be
ruled vertically in preparation for a continuation of the table. Less trivially, it is a moi
difficult matter to determine whether or not there are omissions from the sequence as
have it.

Most earlier analyses of the tablet [e.g., Friberg 1981a, 284-289] have started from
assumption that the tablet is exhaustive and have attempted to determine the criteri
which the scribe chose his starting points, whetheq generators or reciprocal pairs.
All of these attempts seek a single rule for choosing those starting points (e.g., Fribe

311t had already been treated briefly by Neugebauer [1935-1937, Il 52].

32 One example of this techniqueET 6,/2 295, from Ur [Robson 1999, 251]) was certainly carried out by a
trainee scribe: the tablet is a characteristic round “rough jotter,” on the obverse of which is a Sumerian prover|
typical OB school exercise. The tablet was found with many hundreds of other school documents.
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“restrictions on the parameters” [1981a, 284]). But are we justified in assuming that 1
concept of mathematical completeness would have meant anything at all in the early sec
millennium BCE? Or that the scribe must have generated his starting numhersdr
reciprocals) using a single algorithm? And does it really matter? That depends on one’s p
of view, specifically on whether ancient authorial intention or modern audience recepti
has priority. If we are concerned with Plimpton 322 as an aesthetically pleasing piece
(implictly modern) mathematics then it apparently does matter that the table is compl
and elegantly generated: indeed, these assumptions have never been questioned. B
are thereby indulging in mathematical criticism, not history. More seriously, we are guil
of acting like Pingree’s “treasure hunters seeking pearls in the dung heap,” privileging
apparently modern at the expense of the obviously ancient.

If on the other hand we are interested in what Plimpton 322 might have been for, tf
its degree of completeness is an issue. Did it matter to its ancient compiler? Would it e
have been a meaningful issue for him? | would argue, almost certainly not. The 40 stanc
OB multiplication tables, for instance, provide us with an informative parallel. They a
complete neither in themselves (with multiplicands 1-20, 30, 40, and 50) nor as a set |
complete set of multipliers is shown in Table 7). Nor does that set appear to have been ch
according to any one criterion or generating algorithm: many are one-place sexagesim
regular numbers (but 27, for instance, is missing); many are significant numbers in

TABLE 7
The Standard Set of OB Multipliets

Decimal Decimal

Multiplier  equivalent Multiplier  equivalent
50 50 I D R 8 8 | R C
48 48 | R C 730 450 R C
45 45 | R C 712 432 C
44 26 40 160,000 R 7 7
40 40 | R C 6 40 400 D R C
36 36 | C 6 6 | R C
30 30 | R C 5 5 | R C
25 25 | D R 430 270 C
24 24 | R C 4 4 | R C
22 30 1,350 345 225 R C
20 20 | R C 320 200 D R C
18 18 | R C 3 3 | R C
16 40 1,000 D 230 150 D R C
16 16 | R C 224 144 R C
15 15 | R C 215 135 C
1230 750 D C 2 2 | R C
12 12 | R C 140 100 D R C
10 10 | R C 130 90 R C

9 9 | R C 120 80 R C

820 500 D C 115 75 D R C

a] = 1-place regular integer; D= round decimal number; R= entry in the standard reciprocal table

(cf. Table 5); C= commonly occurring coefficient (technical constant) (cf. Robson [1999, 325-332]).
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decimal system (but 4 16250], for instance, is missingf.Many are also found in the
standard reciprocal table (Table 5) (but 2 13 20, for instance, is missing); and many
are commonly occurring coefficients listed in the tables of technical constants [cf. Rob
1999, 325-332] (but 26 40, for instance, is missing). On the other hand, 22 30 belong
none of these categories, and seems to have been included because it is half of 45. Sim
7 is there to complete the set of integers to 10. In sum, the set of multipliers appears to |
been assembled because it gives good coverage of the numbers most likely to be us
scribes in their everyday arithmetical work.

Returning to Plimpton 322, we note that all the reciprocals are four-place or less, with
total number of places in each pair always less than seven. Under these selection condi
it happens that three reciprocal pairs are missing from the table, as shown in Table 8, |
4a, 8a, 11a. The three corresponding entries in the columns of Plimpton 322 are also ¢
there, as well as the long side of the triangle and the analogoygenerators.

Let us for a minute suppose that the scribe did not have access to a “generating func
[cf. Friberg 1981a, 284—289], but collected or omitted his reciprocal pairs using a vari
of criteria just as the compiler(s) of the standard set of multiplication tables presuma
had. Why would he have chosen the ones from which the table is derived, and omittec
three in Table 8? The reciprocal pairs are listed as integers in Table 9, with their deci
equivalents given for ease of reference. Let us assume that the scribe started off by cho
the two-place reciprocal pairs at the top and bottom of the table, which he knew (or had
culated) would yield nice Pythagorean triples. He now had to find as many pairs as he ct
between them, and chose, for ease of calculation, to restrict himself to four-place or sh
numbers (which would also result in four-place or shorter numbers in the final colun
of the table). Naturally, only a few pairs in his range occur in the standard reciprocal |
but many more are derivable from it through the simple (and well-attested) expedien
successively halving and doubling standard reciprocal pairs, or tripling and dividing by
In this way, 11 pairs in our scribe’s range are simply derived from the standard reciprc
table; others he may have picked from the standard multiplication tables, coefficient lists
simply his working knowledge of the sexagesimal system. Only 4a and 8a, two of the th
pairs he omitted, do not seem to have been easily derivable, using attested methods,
the basic OB arithmetical environment. The selecting and sorting processes need not
been concurrent; as we have seen, it was normal scribal practice to sort numerical da
size.

And we can also argue backwards, from Columns Il and Ill. Looking at the short sic
and diagonals and the implicit long sides (Table 1), we notice that no long side is m
than two sexagesimal places long, and no short side or diagonal is more than two a
half sexagesimal places long—that is, with no tens in the largest of the three place:
we suppose that place-length was a desired attribute of these parameters and not s
coincidental, then neither 4a nor 11a should have been included: the short side and diag
of 4a are half a place too long, while the long side of 11a has a whole place too many. C

33 There was a significant decimal substatum to the sexagesimal system: even in the discrete metrology c
fourth millennium Uruk 60s had been conceptualised as six bundles of 10 units [isaeri993, 28], while
“hundred” and “thousand” units were frequently used in administrative records from almost all periods and ple
[Friberg 1987-1990, 537]. There is particularly clear evidence from OB Mari that some scribes actually calcul;
decimally [Soubeyran 1984, 34].
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line 8a ought to have been in the table under this hypothesis—and this was one of the
reciprocal pairs which we have just seen was not easily found using OB méthods.

Is this explanation for the scribe’s choices any less historically plausible than previc
scholars’ [e.g., Friberg 1981a 285-288], despite its shockiadlijocnature? We have to
remember (cf. Criteria 1-2) that we are trying to (re)construct what a real human bei
nearly 4000 years ago, might have thought and done to produce the figures on Plimj
322, not an idealised mathematical automaton operating according to implicitly mod
rules. | leave it for the reader to decide, with another reminder that historical plausibility
a completely different issue from mathematical aesthetics.

WHO WROTE PLIMPTON 322, AND WHY?

Having dismissed modern audience reception as the paramount factor in analysing an
mathematics and attempted to show—in the light of current knowledge—how Plimpton 3
might be constructed, | am duty bound to address the question of ancient authorial intent
what was the tablet for?

For a start, there is no evidence that Plimpton 322 was intended to be any sort of defini
reference table. First, there are no ancient duplicates of the tablet, compared to the n
hundreds of extant standard arithmetical and metrological tables and lists and the se\
dozen duplicates of other types of table, such as cubes or powers of 10 [cf. Neugeb:
1935-1937, | 4-96; 1l 36-37; Ill 49-51; Neugebauer & Sachs 1945, 4-36]. Second, (w
we presume are) intermediate results are shown—in Column I—while only two of the thi
expected end-products are there: the lehgthmissing, against modern expectations. Sc
whatever the scribe’s aim, it was not simply to compile a complete list of Pythagore
triples.

Nor is it convincing to label Plimpton 322 as “research mathematics” a sophisticated
ercise in manipulating numbers for no other purpose than to satisfy idle curiosity: for ea
second millennium Mesopotamia we have no evidence whatsoever for a leisured mic
class of the kind whose members occasionally pursued mathematical recreations in CI;
cal antiquity’® or in early modern Europe. Four thousand years ago scribes had to work fc
living, for the most part as bureaucrats and administrators for the big institutions—temg
and palaces—but also entrepreneurially serving the documentary needs of private ho
holds and individuals. Scribes could also train other scribes; but the only two OB scril
teachers whom we know at all intimately both worked primarily as temple administratc
and did a little teaching on the side. Ku-Ningal served the moon-god Sin in the southern:
of Ur in the mid-18th century [Charpin 1986, 432], while Ur-Utu worked for the temple o
the sun-god Shamash in Sippar, near modern Baghdad, towards the end of the 17th ce
[Gasche 1989, 40-41]. Clearly there were scribes whose job it was to compose new lite

341f one assumes that both halves of the reciprocal pair were allowed up to four places, then one needs tc
a further three pairs (Table 8, lines 6a, 9a, 12a). But all result in two or more of the short side, diagonal, and |
side having too many sexagesimal places.

35 At the end of a careful study of the demography of Greek mathematicians, Netz [1999, 291] concludes
“in [Classical] antiquity, each year saw the birth of a single mathematician on average, perhaps less. A handf
people interested passively in mathematics may have been born as well, but not more than a handful and, po:s
their numbers were quite negligible. In every generation, then, a few dozens at most of active mathematician:
to discover each other and to reach for their tiny audienceThey were thus doubly isolated, in time and in
space.”
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works in Sumerian, and later Akkadian: royal praise poetry was commissioned for alm
all the major kings of the early second millennidfBut while there was a steady demand
for Sumerian literature in both cult and court, in neither institution was there a market
new mathematics.

So we are left, as | mentioned at the beginning, with an educational setting for me
ematical creativity: new problems and scenarios designed to develop the mathema
competence of trainee scribes. Despite the fact that very little OB mathematics is satis
torily traceable to excavated schools, there is a good deal of supporting evidence conte
in the artefacts themselves. One of the most obvious is they fall comfortably into an edt
tional typology, broadly comprising teachers’ output (e.g., textbooks, model solutions w
instructions) and students’ output (e.g., laboriously copied mathematical tables, wor
solutions to problems) [Robson 1999, 174-179]. The purpose of the text books and m
solutions was to teach appropriate methods for solving mathematical problems. The
merical values taken by the parameters in the instructions were purely illustrative and v
chosen to produce simple answers and avoid tricky arithmetical procedures. Half a dc
or so mathematical tablets are known which appear to have been written by teache
the process of finding sets of numerically “nice” problems to give to their class. Indes
Friberg [1981b, 62] has demonstrated that the scribbled numbers written on the rever:
one of those lists were written in the course of determining appropriate values for the
set of problems in the list. These lists of first lines appear to have provided the teacher?
numerically simple variants on a particular set of problems so that the students could e
be given individual numerical practice in a procedure. Support for this hypothesis car
adduced from two sets of multiplication exercises from Ur. The product of three numb
(which are different on each tablet) is multiplied by 6 40 in one group of five tablets, in t
other groups of five it is divided successively by 10 and 30. We might understand then
the calculation of volumes (where the length, width, and height are different in each ca
which are multiplied or divided by specific coefficients [Robson 1999, 253-259].

It has already been suggested that

the purpose of the author of Plimpton 322 was to write a “teacher’s aid” for setting up and solving
problems involving right triangles [Friberg 1981a, 302],

or, alternatively,

that the Plimpton tablet has nothing to do with Pythagorean triplets or trigonometry but, instead, is
a pedagogical tool intended to help a mathematics teacher of the period make up a large number of

solution steps that are easily checked. [Buck 1980, 344]

This is entirely in line with what is known of the educational milieu of OB mathematic
[Robson 1999, 172-183], and would also explain why, as argued above, the lengths o
short sides and diagonals in Plimpton 322 were restricted t®Zé&xagesimal places or
fewer: longer numerical strings would lead to difficult calculations that could interfere wi
the students’ learning of mathematical met6d.

36 Now published by Blaclet al.[1998-].
37 Cf. Robson [1999, 9-10], where Plimpton 322 must now be added to the list of known OB “catalogues’
teachers’ aids.
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But we are still left with a decision to make: was this teachers’ list a compendium
suitable sets of right triangles (Friberg) or reciprocal pairs (Voils/Buck)? If we go wit
Friberg, we have to explain why Column | is in the table and why there is no (extar
column forl. If on the other hand we follow Voils/Buck, the problem is to explain why
Columns Il and Il contain values which have been scaled up by the faetand why the
word “diagonal” crops up in the headings of Columns | and Ill. Neither Friberg [1981:
300] nor Buck [1980, 344] can give a satisfactory explanation. Neither do they make t
observation: that the method used to compile Plimpton 322 was in all likelihood someth
other than the mathematical problem-type that its compiler wanted to teach and test. Fo
we have just seen [cf. Friberg 1981b], numerical examples for such problems were “cook
so that the results were simple whole numbers. That “cooking” process (which presume
started from the results the students were supposed to obtain) must have been a more-c
reverse procedure to the one intended for the students. Are the columns of Plimpton
arranged in cooking order or problem-solving order? What were the problems being coo
or solved? The answer to both questions should influence our attempts to restore the mic
columns.

We can try to answer the first by making comparisons with other mathematical table
All six of the other teachers’ lists we know of give the numerical parameters of the proble
to be set, often embedded in a mathematical question, but the humerical answers are |
given [Robson 1999, 9].

Calculations made in the course of finding the parameters were written roughly at
bottom of the tablet or do not survive at all—presumably because they were erased
made on separate “rough work” tablets. Plimpton 322 does not simply contain start
parameters, as the headings make clear (below), but on the other hand, the orderlines
tidiness of the tablet (no scribbled numbers or erasures on the blank surfaces, for insta
and the copying errors speak against its being rough WoFkese latter arguments, of tablet
format, are stronger than the argument of content: we can easily imagine a teacher wat
to check the intermediate calculations and results. (The other extant teachers’ lists ar
relatively simple problems—the areas of squares and circles, for instance—and use on
two-place starting parameters; the teacher would not presumably have needed to recor
answers to such easy problems. The arithmetic of Plimpton 322, by contrast, is relati
involved.)

On balance, then, Plimpton 322 was probably (but not certainly!) a good copy of
teachers’ list, with two or three columns, now missing, containing starting parameters
a set of problems, one or two columns with intermediate results (Column | and perh:
a missing column to its left), and two columns with final results (11-111). All that remains
is for us to decide what the problem type might have been. Let us start by recapping
information in the headings of Plimpton 322. In Column | (with two, or at most thre
short columns missing before it) we have “the (area of the) holding-square of the diagol
from which 1 is torn out so that the width comes up,” and Columns Il and Il contai
“the square-side of the width” and the “square-side of the diagonal,” respectively. T
heading of Column | and the error in line Il 13 both reveal that Il and Il were calculate
directly orindirectly, from I. The presence of the holding-square indicates that cut-and-pa

38 But the copying and calculation errors do not preclude its being a teacher’s list: such mistakes are not,
have never been, the sole domain of the learner!
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geometry is involved, whereas the occurrence of the diagonal strongly suggests that wi
dealing with triangles too, or at least with configurations within which a diagonal can
located. Equally we need to remember that the width and diagonal of Column | are ¢
triangle of length 1 whereas those of Columns II-lll are of a triangle of leh@ttich is
different every time). Further, if we believe that Plimpton 322 was intended to be a list
parameters to aid the setting of school mathematics problems (and the typological evid
suggests that it was), the question “how was the tablet calculated?” does not have to hav
same answer as the question “what problems does the tablet set?” The first can be ansy
most satisfactorily by reciprocal pairs, as first suggested half a century ago, and the se
by some sort of right-triangle problems. That is perhaps as far as we can go on pre
evidence: without closer parallels we run the risk of crossing the fuzzy boundary frc
history to speculation. The Mystery of the Cuneiform Tablet has not yet been fully solv

IN CONCLUSION: ON METHOD, MATERIAL, AND MATERIAL CULTURE

Parts of this article have been deliberately provocative and polemical. | have compe
history of ancient mathematics as it is sometimes practiced to the workings of popt
detective fiction, and, with Pingree, likened its treatment of ancient artefacts to “pearl:
the dung heap.” But | aim to provoke not defensive anger but rather some reflection on |
we should be thinking and writing about the history of ancient mathematics. This discuss
of Plimpton 322 has in part simply been a ruse to attract attention: | would be much |
interested in this interpretation reaching the general histories than in seeing presenta
there of a wider variety of Mesopotamian mathematics, approached in a more historic
aware manner. It is said that there was very little self-consciousness in the ancient Near
[e.g., Larsen 1987, 224-225]; it can appear attimes that there is no self-consciousness |
attitudes to its mathematics. Most particularly, we need to grasp the challenge of glimps
what is often called the Big Picture: that is, to look beyond our currently favourite “texts”™
begin exploring the mathematical environment and mindset of the ancient world and ac
that it is disturbingly alien in character. While “it is a delusion to suppose that we could e
become contemporaries of the original readers” [Fowler 1985, 49], we need to be av
that

Text allows for a range of different meanings, while at the same time restricting the possibilities as the
reader is guided by the literary codes or instructions inherent in the tefitlodern] readers’ subjective
response to alien, ancient literature will need to be moderated by a greater degree of (explicit) preparation
for the encounter. [Black 1998, 48—49]

Mathematics is as textual as a poem or a bus ticket; at the same time mathematical arte
have as much physicality as a pot sherd or a bus. As | hope | have demonstrated, lingt
analysis, text-critical approaches, historical sensitivity, and archaeological awareness
make significant contributions to the history of mathematics.

The English-speaking mathematical world has a picture of OB mathematics today wt
is based, | would guess, on one primary source—namely Neugeb&$[4 951]—with
a little of his and Sach'MCT [1945] and Aaboe’&pisodeg1964] thrown in. Some of the
more adventurous general histories add in a little smattering of other publications from:
same era, namely Bagqir [1951] and Bruins & Rutten [1961]. But, althougkubgectof
study is (with a roughly 10% margin of error) 4,000 years old fidld of study is relatively
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new—Iless than a century old. Over the past two decades the subject has sprung back
life, and the past decade in particular has witnessed a qualitative shift: scholars are no lo
content to “domesticate” Mesopotamian mathematics into something resembling moc
output. The classic volumes on which the general histories are based are now seriousl
of date and limited in their subject matter. We should no longer be seduced into thinking t
simple mathematics necessarily has a simple history. The ancient Near East—in partic
the cuneiform-writing world—produced a vast quantity of high quality mathematics ovel
3000-year period. We do ourselves (and those who wrote it) a huge disservice to restric
history of ancient mathematics to a list of “clever” mathematical procedures, regurgitati
the usualinterpretations of the same tired tablets that appear in our books over and over a
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