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Quando Che'! Cubo

O n the history of mathematics, the story of the solution to the cubic equation is as

convoluted as it is significant. When Ifirst read an account of it in William Dun-

ham's Journey Through Genius' in 2000, I was captivated by the personalities, the

intrigues, and the controversies that were part of mathematics in sixteenth-cen-

tury Italy. For those unfamiliar with it, the story runs as follows:

In the early 1500s, the mathematician Scipione del Ferro
of the University of Bologna discovered how to solve a de-
pressed cubic-one without its second-degree term-but
in the style of the day he kept his discovery to himself. On
his deathbed in 1526 he divulged the solution to his student
Antonio Fior.2

Eight years later Niccolb Fontana, known as "Tartaglia"
("Stutterer"), hinted that he knew how to solve cubics that
were missing their linear term. For publicly challenged
Tartaglia to a contest in February of 1535, sending him a
set of thirty depressed cubics to solve. At first Tartaglia
was stumped, but with the deadline approaching, he fig-
ured out how to solve depressed cubics, thus winning the
challenge.

In Milan, the mathematician/physician Gerolamo Car-
dano heard about Tartaglia's grand accomplishment. For
several years, he pleaded with Tartaglia to tell him his se-
cret. Finally in 1539, Tartaglia traveled to Milan from Venice
and told Cardano the solution, but made him swear never
to publish it.

With continued research, Cardano figured out how to re-
duce a general cubic to a depressed one, thus completely
solving the classical problem of the cubic. Then his assis-
tant Lodovico Ferrari extended this string of discoveries by
solving fourth-degree problems, but both men refrained

from publishing their results because they were based on
Tartaglia's solution.

On a hunch, Cardano and Ferrari traveled to Bologna in
1543 to look at the papers of Fior's master, Scipione del
Ferro, who they must have reasoned also knew the solu-
tion to depressed cubics. They found Scipione's original al-
gorithm and it was identical to Tartaglia's.

Finally, Cardano felt released from his oath to Tartaglia
Giving full credit to both Scipione and Tartaglia, he published
the solution to the depressed cubic, his own solution to the
general cubic, and Ferrari's solution to the quartic, in 1545, in
a huge tome, Ars Magna. This widely dispersed work is con-
sidered by many to be the first book ever written entirely about
algebra. In it, Cardano devoted little space to the solution of
the quartic, because a fourth power was considered a mean-
ingless concept, not corresponding to any physical object.

Tartaglia was enraged. The following year, in his own
book Quesiti et inventioni diverse, Tartaglia presented his
version of a long conversation between himself and Car-
dano from their encounters six years earlier, in which he
made it clear that his "invention" was not to be disclosed.
He then presented his solution in a poem, saying this was
the easiest way for him to remember it.

* * *
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Quando che'l cubo3

Quando che'l cubo con le cose appresso
Se agguaglia a qualche numero discreto

Trovar dui altri differenti in esso.

Dapoi terrai questo per consueto
Che'l lor produtto sempre sia eguale

Al terzo cubo delle cose neto,

El residuo poi suo generale
Delli lor lati cubi ben sottrati
Varra la tua cosa principale.

In el secondo de cotesti atti
Quando che'l cubo restasse lui solo
Tu osservarai quest'altri contratti,

Del numer farai due tal part'a volo
Che l'una in l'altra si produca schietto

El terzo cubo delle cose in siolo

Delle qual poi, per commun precetto
Torrai li lati cubi insieme gionti

Et cotal somma sara il tuo concetto.

El terzo poi de questi nostri conti
Se solve col secondo se ben guardi
Che per natura son quasi congionti.

Questi trovai, e non con passi tardi
Nel mile cinquecente, quatro e trenta
Con fondamenti ben sald'e gagliardi

Nella citta dal mar' intomo centa.

Any Italian who encountered this poem would have im-
mediately recognized it as being written in the celebrated
form known as terza rima, invented by Dante Alighieri and
used in his masterwork, LaDivina Commedia. Like Dante,
Tartaglia wrote in Italian, which was the language of liter-
ature, not Latin, which was the main language of science:
this was because Tartaglia did not know Latin. Terza rima
is made up of eleven-syllable, or hendecasyllabic, lines.
Each line is iambic with five stressed and six unstressed
syllables. It is an especially fitting form for a poem about
cubic equations because there are two sets of threes con-
tained in it. the poem is written in tercets, or three-line stan-
zas, and all the rhymes, except at the start and finish of the
poem, come in triplicate, with the center line of each ter-
cet rhynmng with the outer lines of the tercet following it,

thus propelling the poem forward. This form is extraordi-
narily well-known by Italians.

* * *

In the early sixteenth century, algebra was rhetorical-
that is, variables, the equal sign, negative numbers, and the
concept of setting something equal to zero did not exist.
Everything was described solely through words. Instead of
writing "x3 + == n' one would write cubo con cosa ag-
guaglia ad un numero or "cube and thing are equal to a
number." It was a cumbersome system, and calculations
and proofs were difficult to follow.

When I saw Tartaglia's poem for the first time in early
2004,1 was so taken with it that I had to translate it, but I
soon found myself faced with a dilemma Either I could
translate it literally as he wrote it, and have it be as obscure
as his was (and it is obscure), or I could do a modem trans-
lation and essentially say, "This is what he meant, though
it is not what he said." The second way would make it very
clear for today's reader. Neither of these felt quite right to
me. Instead, I decided to bridge the two worlds of Renais-
sance mathematics and modem mathematics, attempting
to retain the poem's ancient flavor along with its terza
rima, but using variables where Tartaglia used only words.

Because the vast majority of Italian words end in an un-
stressed syllable, it is natural to have iambic lines of po-
etry with eleven syllables. It is slightly more difficult in Eng-
lish. In my translation I have used an alternating pattern of
masculine rhymes, with the stress and rhyme on the final
syllable, and feminine rhymes, which rhyme on the stressed
penultimate syllable.

* * *

When X Cubed

When x cubed's summed with m times x and then
Set equal to some number, a relation
Is found where r less s will equal n.

Now multiply these terms. This combination
rs will equal m thirds to the third;
This gives us a quadratic situation,

Where r and s involve the same square surd.
Their cube roots must be taken; then subtracting
Them gives you $, your answer's been inferred.

The second case we'll set about enacting
Has x cubed on the left side all alone.
The same relationships, the same extracting:

3Tartaglia, Niccolo, Quesiti et inventioni diverse de Niccolo Tartalea Brisciano.
[Stampata in Venetia per Venturo Roffinelli, 1546.]
Quesito )0M(OlIL. Fatto personalmente dalla eccellentia del medesimo messer Hieronimo Cardano in Millano in casa sua adi. 25. Marzo.1539

*Quando chel cubo con le cose apresso . . . '-begins leaf 123 recto
' . . . Nella citta dal mar'intomo centa.'-ends leaf 123 verso
(Also reproduced on the folloving Web site:
http://digilander.libero.it/basecinque/tartaglia/equacubica.htm)
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Seek numbers r and s, where the unknown
rs will equal m-on-3 cubed nicely,
And summing r and s gives n, as shown.

Once more the cube roots must be found concisely
Of our two newfound terms, both r and s,
And when we add these roots, there's x precisely.

The final case is easy to assess:
Look closely at the second case I mention-
It's so alike that I shall not digress.

These things I've quicldy found, they're my invention,
In this year fifteen hundred thirty-four,
While working hard and paying close attention,

Figure 1. A version of Al-Khwarizmi's completion of the square. Mov-

ing left to right, the equation can be read directly off the diagram.

Surrounded by canals that lap the shore.

So what exactly is Tartaglia saying? He's saying that when
x$ + mx = n, two other numbers, r and s, can be found such
that r - s = n and rs = (m/3)3. Mathematicians of his day
knew that when they were told the values of a product and
a difference (or sum) of two unknown numbers, they had
what I have called a "quadratic situation" (there was no such
thing as a quadratic equation). They had an algorithm, which
was tricky but manageable, to find the solutions to such sit-
uations. In fact, because they didn't recognize negative num-
bers, they had a set of variants of what we would think of
as one single thing, namely the quadratic formula Using the
applicablevariant, one could solve forrand s. Next, Tartaglia
is telling his readers to take the cube roots of the numbers
r and s, and to subtract the cube root of s from that of r.
This will be x, the solution to the given cubic.

He then moves on, in the fourth stanza, to what was con-
sidered a different situation, when x3 = mx + n, and he gives
the solution again. The third case, when x3 + n = mx, he
says, in the seventh stanza, is almost exactly like the second,
and so he leaves that for the reader to figure out He con-
cludes with a flourish by claiming credit for the discovery,
and telling his readers he found the solution in Venice.

* * *

Tartaglia discovered his solution by thinking about an
actual physical cube. To him, and most likely to Scipione
as well, the solution to a problem involving a cubic was em-
bodied in a real cube. Seven hundred years earlier, in Bagh-
dad, Al-Khwarizmi (from whose name comes the word "al-
gorithm") thought about a square when working on
problems involving quadratics. He came up with a formula
for "completing the square" to solve such problems.

An equation of the type x2 + mx = n can be pictured by
first drawing a square of side x (see Figure 1). Next make
two congruent rectangles of length x and width m/2, and
attach them to two adjacent sides of the square. The di-
mensions m/2 and x are picked for very good reasons-
two rectangles of this size together make up an area of mx,
to add to the original square of the area x2, and these three
together have a joint area of n, giving x2 + mx = n.

The picture looks like a square cardboard box from
above, with two adjacent flaps open. It calls out for one
other square, of side length m/2, to be drawn in, in order
to complete the larger square. Let's call the side of this new
big square t, and the side of the new little square u. When
we combine the area n with the area u2, which is (m/2)2,
we get the area of the larger square, t2. The square root of
this square area-that is, the square root of n + (m/2)2 -
gives us the side length t. But t is equal to x + m/2, so x
equals n +(m/0)2 - m/2. Thus by completing the square,
Al-Khwarizmi solved the quadratic.

In a similar fashion to Al-Khwarizmi, Tartaglia envisioned
"completing the cube" to solve the depressed cubic. He took
Al-Khwarizmi's drawing into a third dimension (Fig. 2).

With an equation of the form x3 + mx = n, he started
by imagining a cube of side x (this corresponded to the
square of side x in two dimensions). He then looked for
analogous volumes to play the role of the two rectangles
flanking the square of side x, but since he was in three di-
mensions he instead imagined three slabs. Each had one
side of length x, and two other sides of unknown lengths,
which we will call t and u. These three slabs fit neatly

Figure 2. Tartaglia's completion of the cube. Once again the equa-
tion can be read directly off the diagram.
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x2+2ta+u2=t1

Completing the Cube
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X3+3tux+W3 =t3



Figure 3. Like a Necker cube, this picture flips between two inter-
pretations. In the intended interpretation, one sees three slabs, each
of volume tux, swirling counter-clockwise around a (missing) cube
of side u. In the other interpretation (and this came as a complete

and lovely surprise to me) one sees a cube of side u sitting nestled
in one comer of a cutaway cube of side t, and thanks to the colors

painted on the large cube's walls, one cannot help "seeing" (though

they are missing) the three slabs of volume tux, once again swirling
counter-clockwise about the little cube of side u.

around the cube of side x, thus giving him a larger cube of
side t, but (as before) with one crucial piece missing. In or-
der to complete the larger cube, Tartaglia added one last
cube of side u (corresponding to the little square of side u
that completed Al-Khwarizmi's square; Fig. 3).

Each of the three slabs has sides of length t, u, and x,
and so the total volume of the slabs is 3tux. Now the vol-
umes of the two interior cubes are x3 and u3, so the total
volume of the big cube is x3 + 3tux + u3, but of course it
is also t3. In symbols,

x3 + 3tux + u3 = t3.

We can imagine Tartaglia striving to imagine the di-
mensions of a physical cube that would represent the so-
lution to an actual depressed-cubic problem posed by his
challenger Fior. In Al-Khwarizmi's quadratic, the value of
u is known instantly without calculation. But in the case
of the cubic, things are not so simple, because one doesn't
know the value of either t or u. In the realm of al possible
cubes, Tartaglia needed to find the one cube with the ex-
act dimensions that satisfy his problem. He had to imagine
the lengths u and t both changing (the overall cube grow-
ing and shrinking, and also the cube of side x changing size
because it is determined by t and u, its side being t - u).
It seemed as if the search for the proper cube could only
be carried out by trial and error, without any formula, and
thus it was not really a mathematical solution.

At this point, though, rather than giving up, Tartaglia has
a brilliant insight. Looking at his equation (above), he re-
alizes that if he merely moves u3 to the right side, it will
give him a new equation that precisely embodies Fior's de-
pressed cubic x3 + mx = n, with 3tu playing the role of m
and t3 - u3 playing the role of n.

x3 + 3tux = t3-u3

x3 + mx = n

This is a breakthrough moment for Tartaglia, because it
tightly connects the unknowns, t and u, with the knowns,
m and n:

3tu=rm, t3 -u 3 =n.

This is very promising, but he is not there yet, because he
doesn't know how to solve these equations for t and u in terms
of m and n. As he considers these equations, however,
Tartaglia sees that he has a situation that comes very close to
being a quadratic in t and u, but just misses-namely, he has
aproduct and a difference involving t and u, but one of them
involves their cubes. Thus provoked, Tartaglia has another in-
sight. He gives names to the two cubic volumes, calling t3 H'

and u3 "s," knowing that in this way he wil obtain a genuine

quadratic situation (involving a difference and aproduct) with
his new variables r and s. Now his equations are

r-s=n
rs = (m/3)3.

The last equation is an immediate consequence of the def-
inition of r and s. From 3tu = m it follows that tu = m/3,
and thus, cubing both sides, t3 u3 = (m/3)3 .

Now he is operating in familiar territory. He can easily
find his quadratic by eliminating r as follows: r = n + s and
therefore rs = s(n + s), giving

S2 + ns = (m3/)3 .

Tartaglia has at last come full circle. After starting out
with Al-Khwarizmi's model of completing the square in or-
der to come up with his own model of the cubic, he now
applies Al-Khwarizmi's square-completing method to solve
this quadratic for r and s; having gotten those, he can then
take their cube roots to obtain the values of t and u. Then
he merely subtracts u from t, and x has been found.

* * *

When Cardano published Ars Magna, rather than giving
a general proof, he illustrated the solution to this particu-
lar cubic: x3 + 6x = 20. Following the poem's directions,
here is how it is solved.

x3 + 6x = 20
r - s = 20
rs = (6/3)3 = 23 = 8
r = 20 + s and therefore s(20 + s) = 8
s2 + 20s = 8
s2 + 20s - 8 = 0.

Using the quadratic formula to solve for s, we get

s= (-20 t \ 1400+32)/2
= -1V0 0

=V-18- 10

r =s +20== \/0 + 10.
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Numerically,

r = 20.3923 and s = .3923.

Then, taking these numbers' cube roots,

x =/r_ - %ls

x 2.73205 - .73205
x =2.

If we plug this back into the original equation x3 + 6x =
20, we find that it is correct: 8 + 12 = 20. The method
works, although it must be admitted that it makes it look
fortuitous that the answer is a simple integer.

* * *

Finding a solution by radicals to the cubic was a monu-
mental accomplishment. However, it led to a thomy ob-
stacle: in the case of a cubic equation that had only one
real root (back then, mathematicians would have said the
equation had only one root at all, for no one suspected that
all cubics have three roots), the algorithm always yielded
that root By contrast, in the case of a cubic that had three
real roots, the algorithm seemed to yield nonsense. Even if
the three real roots were already known, it led to expres-
sions featuring negative numbers under the square-root
sign, a situation that Cardano dubbed the casus irre-
ducibilis, reflecting the fact that Renaissance mathemati-
cians were not comfortable with negative numbers, let
alone their square roots.

The Bologna mathematician Rafael Bombelli took Car-
dano's casus irreducibilis very seriously and tried to make
sense of the square roots of negative numbers. He figured
out how to do the four standard arithmetical operations not
only with negative numbers but also with their 'imaginary"
square roots, and shortly before his death in 1572, he pub-
lished a book on this topic titled Algebra, in which he pre-
sented an early symbolic notation system. Although he
never found out how to take cube roots of complex num-
bers in general, he was able to determine the complex cube
root called for by Cardano's algorithm in one specific case,
and he showed that the two imaginary contributions to the
final answer canceled each other out, leading to a purely
real root More details of Bombeli's work will be found in
a recent scholarly article in this joumal by Federica LaNave
and Barry Mazur, see vol. 24, no. 1 (2002), 12-21.

Despite this accomplishment, Cardano's formula pro-
vided Bombelli with only one of the equation's three roots,
and it took another 40 years until Francois Viete figured
out how to find the other two real roots, and then a further
300 years until mathematicians penetrated the mystery of
the casus irreducibilis and finally understood why com-
plex numbers were needed to express the real roots to cu-
bic equations through radicals.

When Ferrari based his solution of the quartic equation
on that of the cubic, just as Tartaglia had based his solu-
tion of the cubic on that of the quadratic, it seemed as if
this clever method could go on indefinitely: lower the de-

gree of an equation by one, and use this new equation's
formula to help solve the original. But when mathemati-
cians tried to solve the quintic equation in this way, they
hit a brick wall. It wouldn't yield.

For the next 250 years, mathematicians struggled to
solve quintics by radicals. Finally in 1799, Paolo Ruffini, an-
other mathematician/physician, wrote a book Teoria Gen-
erale delle Equazioni, offering a proof that fifth-degree
equations-indeed, all equations of degree greater than
four-were in general unsolvable by radicals; but almost
no one accepted his claims. Twenty-two years later the dis-
tinguished French mathematician Cauchy wrote to Ruffini,
praising his proof, but few people agreed with Cauchy. In
a few years, however, Niels Henrik Abel in 1825 and
Evariste Galois in 1830 published works on the unsolv-
ability of the quintic equation and equations of higher or-
der, and their discoveries, which were centered on the sym-
metry groups of the roots, were widely accepted.

For the thousand or so years between the destruction
of the Library of Alexandria and the Renaissance, European
mathematics, with a few notable exceptions, had made
slow progress. But the Italian mathematicians who worked
on solving the cubic initiated a series of events that led to
the use of negative numbers, complex numbers, powers
and dimensions higher than the third, and symbolic alge-
bra, with its highly efficient system of symbol manipula-
tion. This work, spanning roughly one hundred years, rein-
vigorated mathematics and led directly to many of the
discoveries of the modem era.
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