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 SHERLOCK HOLMES IN BABYLON

 R. CREIGHTON BUCK

 Let me begin by clarifying the title "Sherlock Holmes in Babylon." Lest some members of the
 Baker Street Irregulars be misled, my topic is the archaeology of mathematics, and my objective
 is to retrace a small portion of the research of two scholars: Otto Neugebauer, who is a recipient
 of the Distinguished Service Award, given to him by, the Mathematical Association of America
 in 1979, and his colleague and long-time collaborator, Abraham Sachs. It is also a chance for me
 to repay both of them a personal debt. I went to Brown University in 1947, and as a new
 Assistant Professor I was welcomed as a regular visitor to the Seminar in the History of
 Mathematics and Astronomy. There, with a handful of others, I was privileged to watch experts
 engaged in the intellectual challenge of reconstructing pieces of a culture from random
 fragments of the past. (See [4],[5].)

 This experience left its mark upon me. While I do not regard myself as a historian in any
 sense, I have always remained a "friend of the history of mathematics"; and it is in this role that
 I come to you today.

 Let me begin with a sample of the raw materials. Figure 1 is a copy of a cuneiform tablet,
 measuring perhaps 3 inches by 5. The markings can be made by pressing the end of a cut reed
 into wet clay. Dating such a tablet is seldom easy. The appearance of this tablet suggests that it
 may have been made in Akkad in the city of Nippur in the year -1700, about 3,700 years ago.

 Confronted with an artifact from an ancient culture, one asks several questions: (i) What is
 this and what are its properties? (ii) What was its original purpose? (iii) What does this tell me
 about the culture that produced it? In the History of Science, one expects neither theorems nor
 ngorous proofs. The subject is replete with conjectures and even speculations; and in place of
 proof, one often finds mere confirmation: "I believe P implies Q; and because I also believe Q, I
 therefore also believe P."

 In Figure 1, we draw a vertical line to separate the first two columns. In the first column, we
 recognize what seem to be counting symbols for the numbers from 1 through 9. Paired with
 these, in the second column we see 9, then I and 8, then 2 and 7, and then 3 and 6. This suggests
 that what we have is a "table of 9's," a multiplication table for the factor 9. Checking further, we
 see 5 and 4 across from the counting symbol for 6, which confirms the conjecture. However, in
 the next line we see 7 and then across from it what seems to be a 1 and a 3.

 We modify our conjecture; instead of an ordinary decimal system, we are dealing with a
 hybrid. There is a decimal substratum, using one type of wedge for units and another for tens,
 but the system is base 60 in the large. The 1 and 3 in fact represent 60+3 = 63. We then
 immediately conjecture that the same wedge symbol will be used for 10, for 60, for (60)2, (60)3,
 and so on, while the digits will be given in a decimal form.

 Thus from a single tablet we might have conjectured a complete sexagesimal numeral
 system. We would then seek confirmation of this by examining other tablets, hoping to see the
 same patterns there. Indeed, this was done in the last century, and among the thousands of

 In 1942 the author received an M.A. from the University of Cincinnati and went to Harvard as a Member of
 the Society of Fellows. He received his Ph.D. from Harvard with a thesis consisting mostly of published papers.
 He taught at Brown, 1947-50; since then he has been at the University of Wisconsin, Madison, except for a year
 at Stanford as a Guggenheim Fellow and a year at Princeton as a staff member of Project FOCUS. His
 mathematical interests were originally in classical complex analysis but are now more in modern analysis and
 approximation theory; he has' also published papers in algebra and number theory and has written several
 textbooks. He considers himself to be a "friend of Applied Mathematics" and as such was for a time Director of
 the Mathematical Research Center at Madison. He has been active in both the AMS and MAA; he has served as
 Vice-President of each and was Chairman of CUPM, 1959-63. This paper is based on an invited address to the
 MAA, given in Biloxi in January 1979.-Editors

 335

This content downloaded from 
��������������156.26.1.22 on Sat, 01 May 2021 14:03:53 UTC�������������� 

All use subject to https://about.jstor.org/terms



 336 R. CREIGHTON BUCK [May

 tr 4W X

 v rr irWI

 AT T4,2 R

 FIG. 1

 Babylonian tablets many were found that bear multiplication tables of the same general type as
 that given in Figure 1, generated by various multiplication factors. There are a great many
 duplicates.

 We find the Babylonian numeral system cumbersome to write. In this paper, base 60
 numerals will be written by putting the digits (0 through 59) in ordinary Arabic base ten, and
 separating consecutive digits by the symbol "/". The "units place" will be on the right as usual.
 Thus,

 7/13/28 represents 28 +13(60) + 7(60)2 = 26,008

 Addition is easy:

 14/28/31

 3/35/45

 18/4/16

 If the tablets that bear multiplication tables are catalogued, something strange is seen. Many
 tables of 9's, 12's, etc., are found; but there are also multiplication tables for unlikely factors,
 while many tables we would have expected never appear. In Figure 2, we list those that occur
 frequently.

 We are left with three puzzles: (i) Why are some tables missing? (For example, 7, 11, 13, 14,
 etc.?) (ii) Why are there tables with factors such as 3/45, 7/12, 7/30, and 44/26/40? (iii) Why
 are there so many tablets with exactly the same multiplication tables on them? Some clues are
 found; for example, there are tablets that contain two versions of the same multiplication table,
 one done neatly and one less neatly and perhaps with an error or two. I am sure that a familiar
 picture comes immediately to your mind: a cluster of students, all engaged in copying a model
 table provided by the teacher who will shortly be grading their efforts. Are we not correct to
 infer that in Nippur there was probably an extensive school for scribes who were in training to
 become bureaucrats or priests?

 To help answer the first two questions, let us examine another tablet, which for convenience I
 have transcribed into the slash notation. (See Fig. 3.) This again fits the pattern of two matched
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 1980] SHERLOCK HOLMES IN BABYLON 337

 Factors Used for

 Multiplication Tables

 2 18 1/15=75 7/12=432

 3 20 1/20=80 7/30=450

 4 24 1/30=90 8/20=500
 5 25 1/40=100 12/30_750
 6 30 2/15=135 16/40= 1000
 8 36 2/24= 144 22/30= 1350
 9 40 2/30= 150 44/26/40= 160,000
 10 45 3/20=200
 12 48 3/45 = 225 and a scattering of others
 15 50 4/30=270
 16 6/40=400

 FIG. 2

 2 30 16 3/45 45 1/20
 3 20 18 3/20 48 1/15

 4 15 20 3 50 1/12

 5 12 24 2/30 54 1/6/40
 6 10 25 2/24 1/4 56/15
 8 7/30 27 2/13/20 1/12 50

 9 6/40 30 2 1/15 48

 10 6 32 1/52/30 1/20 45

 12 5 36 1/40 1/21 44/26/40

 15 4 40 1/30

 FIG. 3

 columns, and we look for an explanation. We note at once that in the first few rows the product
 of the adjacent column numbers is always 60. There seem to be some exceptions, however. With
 the pair 9 and 6/40, this product is

 (9) x (6/40) = (9) x (400) = 3600
 and again

 (16) x (3/45) = (16) x (225) = 3600

 while still further down, we see

 (27) x (2/13/20) = (27) x (8000) =216,000.

 The solution becomes obvious if we write these products in Babylonian form; since 60 is 1/0,
 3600 is 1/0/0, and 216,000 is 1/0/0/0. For confirmation, look at the last entry in the table:

 (1/21) x (44/26/40)= (81) x (160,000) = 12,960,000

 =1/0/0/0/0.

 If we now follow the Babylonian practice of omitting terminal zeros, we see that Figure 3 is
 merely a table of reciprocals, written in "sexagesimal floating point." If A is an integer in the
 first column, the integer paired with it in the second column, A R, is one chosen so that their
 product would be written as "1," meaning any suitable power of 60. The integers that appear in
 the table will always be factorable into powers of 2, 3, and 5, since these have terminating
 reciprocals in base 60. The term "floating-point arithmetic" is today a computer concept but is
 also understandable to anyone who has used a slide rule or worked with logarithms; the concept

This content downloaded from 
��������������156.26.1.22 on Sat, 01 May 2021 14:03:53 UTC�������������� 

All use subject to https://about.jstor.org/terms



 338 R. CREIGHION BUCK [May

 would also have been familiar to medieval astronomers who multiplied large numbers by the
 device called "posthaphaeresis."

 Now that Figure 3 is understood, we can answer the two puzzles left hanging on the previous
 page. Observe that the integers used to generate multiplication tables, as seen in Figure 2, mostly
 come from the standard reciprocal table. (There are also tablets that contain nonstandard
 reciprocals, reciprocals of such numbers as 7,11, etc., of necessity given in terminating ap-
 proximate form.) In floating point, B * A = B x A R. Thus the combination of a set of multiplica-
 tion tables and a reciprocal table makes it easy to carry out floating-point division, provided that
 the divisor is one of the "nice" numbers in base 60, of the form 2a3P5Y. For example, let us
 divide 417 by 24; in base 60, this will be 6/57 24= 17/22/30.

 Method: 6/57 ? 24 = (6/57) x (24)R = (6/57) x (2/30):

 6/57 x 2= 12+ 1/54= 13/54

 6/57x30=3+28/30= 3/28/30

 answer = 17/22/30

 The last steps in this calculation are easier if one recalls that 30 = 2R, so that multiplication by 30
 is the same as halving. (Of course the scribe must be sure to keep track of the actual magnitudes
 and place values.)

 v _ . _ \~~FG.

 N)~~~ 0

 M - C - - . .

 00
 That common calculations were made in this fashion becomes even more plausible in the

 light of one remarkable discovery. This is an inscribed cylinder, carrying on its curved face a
 copy of the standard reciprocal table and each of the standard multiplication tables. (In Figure
 4, we show this restored, with each multiplication table indicated by its generator.) With the help
 of this cylinder, perhaps mounted on a stand, a scribe could easily keep track of taxes and

 calculate wages; perhaps we have here the Babylonian version of a slide rule or desk calculator!
 With this brief introduction to the arithmetic of the Babylonians, we turn to another tablet

 whose mathematical nature had been overlooked until the work of Neugebauer and Sachs. It is
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 1980] SHERLOCK HOLMES IN BABYLON 339

 in the George A. Plimpton Collection, Rare Book and Manuscript Library, at Columbia
 University, and usually called Plimpton 322. (See Fig. 5, which is reproduced here by permission
 of the Library.) The left side of this tablet has some erosion; traces of modern glue on the left
 edge suggest that a portion that had originally been attached there has since been lost or stolen.
 Since it was bought in a marketplace, one may only conjecture about its true origin and date,

 FIG. 5. Plimpton 322

 Plimpton 322

 Column A ColumnKB Column C

 15 1/59 2/49

 58/14/50/6/15 56/7 3/12/1

 1/15/33/45 1/16/41 1/50/49
 5 29/32/52/16 3/31/49 5/9/1
 48/54/ 1/40 1/5 1/37
 47/ 6/41/40 5/19 8/1
 43/11/56/28/26/40 38/11 59/1
 41/33/59/ 3/45 13/19 20/49
 38/33/36/36 9/1 12/49
 35/10/2/28/27/24/26/40 1/22/41 2/16/1
 33/45 45 1/15
 29/21/54/ 2/15 27/9 48/49
 27/ 3/45 7/12/1 4/49
 25/48/51/35/6/40 29/31 53/49
 23/13/46/40 56 53

 FIG. 6
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 340 R. CREIGHTrON BUCK [May

 although the style suggests about -1600 for the latter. As with most such tablets, this had been
 assumed to be a commercial account or inventory report. We will attempt to show why one can
 be led to believe otherwise.

 First, let us transcribe it into the slash notation, as seen in Figure 6. We have reproduced the
 three main columns, which we have labeled A, B, and C. We note that there are gaps in column
 A, due to the erosion. However, it seems apparent that the numbers there are steadily
 decreasing. We note that some of the numerals there are short and some long, apparently at
 random. In contrast with this, all the numerals in columns B and C are rather short, and we do
 not see any evidence of general monotonicity.

 B C

 119 169

 3367 11521

 4601 6649

 12709 18541

 65 97

 319 481

 2291 3541

 799 1249

 541 769

 4961 8161

 45 75

 1679 2929

 25921 289

 1771 3229

 56 53

 FIG. 7

 C+B C-B

 288 50

 14888 8154

 11250 2048

 31250 5832

 162 32

 800 162

 5832 1250

 2048 450

 1310 228

 13132 3200

 120 30

 4608 1250

 26210 -25632

 5000 1458

 109 -3

 FIG. 8

 Since it is easier for us to work with Arabic numerals, let us translate columns B and C into
 these numerals and look for patterns. (See Fig. 7.) We see at once that B is smaller than C, with
 only two exceptions. Also, playing with these numbers, we find that column B contains exactly
 one prime, namely, 541, while column C contains eight numbers that are prime.

 In the first 20,000 integers, there are about 2,300 primes, which is about 10 percent; among 15
 integers, selected at random from this interval, we might, then, expect to see one or two primes,
 but certainly not eight! This at once tells us that the tablet is mathematical and not merely

 B C (a,b)

 119 169 12,5

 3367 11521 ?

 4601 6649 75, 32

 12709 18541 125,54

 65 97 9,4

 319 481 20,9

 2291 3541 54,25

 799 1249 32,15

 541 769 ?

 4961 8161 81,40
 45 75

 1679 2929 48,25

 25921 289 ?

 1771 3229 50,27

 56 53 ?

 FIG. 9

 Corrected Version

 B C (a,b)

 119 169 12,5

 3367 4825 64,27

 4601 6649 75,32
 12709 18541 125,54

 65 97 9,4
 319 481 20,9
 2291 3541 54,25
 799 1249 32,15
 481 769 25,12
 4961 8161 81,40

 45 75 1, !=30
 1679 2929 48,25
 161 289 15,8

 1771 3229 50,27
 56 106 9,5

 FIG. 10

This content downloaded from 
��������������156.26.1.22 on Sat, 01 May 2021 14:03:53 UTC�������������� 

All use subject to https://about.jstor.org/terms



 1980] SHERLOCK HOLMES IN BABYLON 341

 arithmetical. (Imagine your feelings if you were to find a Babylonian tablet with a list of the
 orders of the first few sporadic simple groups.)

 Encouraged, one attempts to find further visible patterns, for example, by combining the

 entries in columns B and C in various ways. One of the earliest tries is immediately successful.
 In Figure 8, we show the results of calculating C + B and C- B. If you are sensitive to

 arithmetic you will note that, in almost every case, the numbers are each twice a perfect square.
 If C+B=2a2 and C-B=2b2, then B=a2-b2 and C=a2+b2. Thus the entries in these

 columns could have been generated from integer pairs (a,b). In passing, we note that b, being

 (a - b)(a + b), is not apt to be prime; on the other hand, when a and b are relatively prime, every
 prime of the form 4N + 1 can be expressed as a2 + b2.

 In Figure 9, we have recopied columns B and C, together with the appropriate pairs (a, b) in

 the cases where this representation is possible. As a further confirmation that we are on the right
 track, we note that in every such pair the numbers a and b are both "nice," that is, factorable in
 terms of 2, 3, and 5. In five cases, the pattern breaks down and no pair exists. It will be a further
 confirmation if we can explain these discrepancies as errors made by the scribe who produced
 the tablet. We make a simple hypothesis and assume that B and C were each computed
 independently from the pair (a, b) and that a few errors were made but each affected only one
 number in each row. Thus in each vacant place we will assume that either B or C is correct and
 the other wrong, and attempt to restore the correct entry. Since we do not know the correct pair
 (a, b) we must find it; because of the evidence in the rest of the table, we insist that an
 acceptable pair must be composed of "nice" sexagesimals.

 We start with line 9; here, B = 541, which happens to be the only prime in Column B. We

 therefore assume B is wrong and C is correct, and thus write C = 769 = a2 + b2. This has a single
 solution, the pair (25,12). (We also note that both happen to be nice sexagesimals.) If this is
 correct, then B should have been (25)2 - (12)2 =481, instead of 541 as given. Is there an obvious
 explanation for this mistake? Yes, for in slash notation, 541 = 9/1 and 481 = 8/1. The anomaly
 in line 9 seems to be merely a copy error.

 Turn now to line 13; here, B is far larger than C, which is contrary to the pattern. Assume
 that B is in error and C is correct, and again try C = 289 = a2+ b2. There is a "nice" unique
 solution, (15,8), and using these, we are led to conjecture that the correct value of B is
 (15)2- (8)2 = 161. Again, we ask if there is an obvious explanation for arriving at the incorrect
 value given, 25921. A partial answer is immediate: (161)2 =25921; so that for some reason the
 scribe recorded the square of the correct value for B.

 Continuing, consider line 15. Since B = 56 and C = 53, we have B > C, which does not match
 the general pattern. However, it is not clear whether B is too large or C too small. Trying the
 first, we assume C is correct and solve 53 = a2 + b2, obtaining the unique answer (7,2). We reject
 this, since 7 is not a nice sexagesimal. Now assume that B is correct, and write 56= a2 b2 =
 (a+ b)(a - b). This has two solutions, (15,13) and (9,5). We reject the first and use the second,
 obtaining 92 + 52 = 106 as the correct value of C. Seeking an explanation, we note that the value
 given by the scribe, 53, is exactly half of the correct value.

 Turning now to line 2 of Figure 9, we have B = 3367 and C= 11521, either of which might be
 correct. Assume that C= a2+ b2 and find two solutions (100,39) and (89,60). While 100 and 60
 are nice, 39 and 89 are not, so we reject both pairs and assume that B is correct. Writing
 3367 = (a - b)(a + b) and factoring 3367 in all ways, we find four pairs: (1684,1683), (244,237),
 (136,123), (64,27), of which we can accept only the last. This yields (64)2 +(27)2 = 4825 as the
 correct C. Comparing this with the number 11521 that appeared on the tablet, we see no
 immediate naive explanation for the error. For example, since 4825 = 1/20/25 and 11521=
 3/12/1, it does not seem to be a copy error. Without an explanation, we may have a little less
 confidence in this reconstruction of the entries in line 2.

 The last misfit in the table is line 11, where we have B =45 and C = 75. This is unusual also
 because this is the only case where B and C have a common factor. The sums-and-differences-
 of-squares pattern failed because neither C + B = 120 nor C - B = 30 is twice a square. However,
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 342 R. CREIGHTON BUCK [May

 everything becomes clearer if we go back to base 60 notation and remember that we use floating
 point; for 120=2/0, which is twice 1/0 and which we can also write as 1, clearly a perfect
 square. In the same way, 30 is twice 15, which is also 4R and which is the square of 2R. The
 pattern is preserved and no corrections need be made in the entries: with a= I= 1/0 and
 b = .2R. =30=0/30, we have a2= 1/0 and b2=0/15, and

 C=a2+ b2= 1/0+0/15 = 1/15=75

 B=a2- b2= 1/0-0/15 = 0/45 = 45.

 (Another aspect of the line 11 entries will appear later.)

 With this, we have completed the work of editing the original tablet. In Figure 10, we give a
 corrected table for columns B and C, together with the appropriate pairs (a, b) from which they
 can be calculated.

 It is now the time to raise the second canonical question: What was the purpose behind this
 tablet? Speculation in this direction is less restricted, since the road is not as well marked. We
 can begin by asking if numbers of the form a2 - b2 and a2 + b2 have any special properties. In
 doing so, we run the risk of looking at ancient Babylonia from the twentieth century, rather than
 trying to adopt an autochthonous viewpoint. Nevertheless, one relation is extremely suggestive,
 involving both algebra and geometry. For any numbers (integers) a and b,

 (a2- b2)2 + (2ab)2 = (a2 + b2)2

 In addition, if we introduce D = 2ab, then B, C, and D can form a right-angled triangle with
 B2 + D2 = C2. And finally, these formulas generate all Pythagorean triplets (triangles) from the
 integer parameters (a, b). (See Fig. 1.)

 B

 D

 B=a2-b2, D=2ab, C=a2+b2

 FIG. 11

 There is no independent information showing that these facts were known to the Babylonians
 at the time we conjecture that this tablet was inscribed, although, as will appear later, their
 algebra had already mastered the solution of quadratic equations. If the tablet indeed is
 connected with this observation, then the unknown column A numbers ought to be connected in
 some way with the same triangle. The next step is, then, to proceed as before and try many
 different combinations of B, C, and D, in hopes that one of these will approximate the entries in
 column A. Slopes and ratios are an obvious starting point, so one calculates C + B, C + D, B + D,
 etc. After discarding many failures, one arrives at the combination (B D)2. In Figure 12, we
 give the values of this expression, calculated from the corrected values of B and using the
 hypothetical values of (a, b) to find D. (We remark that it was very helpful to have a
 programmable pocket calculator that could be trained to work in sexagesimal arithmetic!)

 If we now return to Figure 6 and compare the numerals given there in column A with those
 that appear in Figure 12, we see that there is almost total agreement. For example, in line 10 we
 have exact duplication of an eight-digit sexagesimal! On probabilistic grounds alone, this is an
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 1980] SHERLOCK HOLMES IN BABYLON 343

 overwhelming confirmation. Of course, at the top of the tablet where there were gaps due to
 erosion, Figures 6 and 12 are not the same, but it is evident that the calculated data in Figure 12
 can be regarded as filling in the gaps. There are two minor disagreements in the two tables. In

 line 13, the tablet does not show an internal "0" that is present in Figure 12. This could have

 been the custom of the scribe in dealing with such an event. In line 8, the scribe has written a
 digit "59" where there should have been a consecutive pair of digits, "45/14". Since 59=45+ 14,
 it is not difficult to invent several different ways in which an error of this sort could have been

 made.

 Calculated Values of (B +4-D

 line 1 59/0/15
 2 56/56/58/14/50/6/15
 3 55/7/41/15/33/45
 4 53/10/29/32/52/16
 5 48/54/1/40
 6 47/6/41/40

 7 43/11/56/28/26/40
 8 41/33/45/14/3/45
 9 38/33/36/36
 10 35/10/2/28/27/24/26/40
 11 33/45
 12 29/21/54/2/15
 13 27/0/3/45
 14 25/48/51/35/6/40
 15 23/13/46/40

 FiG. 12

 It should be remarked that Neugebauer and Sachs did not use (B +D) as a source for
 column A but rather (C + D)2. Because of the relationship between B and C, and formula (*),
 one sees that (C? D)2 = (B + D)2 + 1. Thus, the only effect of the change would be to introduce
 an initial "1/" before all the sexagesimals that appear in Figure 12, and the reason for their
 choice was that they believed that this was true for column A on the Plimpton tablet. Others
 who have examined the tablet do not agree. (I have not seen the tablet, and I do not believe it
 matters which alternative is used.)

 We now know the relationship of columns A, B, and C. Referring to Figure 11, C is the
 hypotenuse, B the vertical side, and A is the square of the slope of the triangle; thus, in modern
 notation A = tan2 0. It is interesting to observe that the anomalous case of line 11, with B =45
 and C= 75, tums out to be the familiar 3,4,5 triangle; in the Babylonian case, this would seem
 to have been the 3, 1 , 5 triangle, since 45 =3 x4R and 75 = I/15 =5 X4R. Of course the triangle,
 the side D, and the parameters (a, b) are all constructs of ours and not immediately visible in the
 original tablet. All that we can assert without controversy is that A = B2 ? (C2 - B2).

 Let us reexamine some of our reasoning. In lines 2, 9, 13, and 15, the scribe recorded correct
 values for A but incorrect values for C, B, B, and C, respectively. This suggests strongiy that A
 was not calculated directly from the values of B and C, but that A, B, and C were all calculated
 independently from data that do not appear on the tablet; our hypothetical pair (a,b) gains life.
 (Of course there is the possibility that the tablet before us is merely a copy from another master
 tablet.) In either case, it seems odd that column A should be error free while columns B and C,
 involving simpler numbers, should have four errors.

 Other questions can be raised. If, as argued by Neugebauer, the purpose of the tablet was to
 record a collection of integral-sided Pythagorean triangles (triplets), why do we not see the
 values of D, or at least the useful parameters (a, b)? And why would one want the values in
 column A which are squares of the slope? And why should the entries be arranged in an order
 that makes the numbers A decrease monotonically?
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 344 R. CREIGHTON BUCK [May

 Variants of this explanation have been proposed. If one computes the values of the angle 0
 for each line of the tablet, they are seen to decrease steadily from about 450 to about 300, in
 steps of about 1?. Is this an accident? Could this tablet be a primitive trigonometric table,
 intended for engineering or astronomic use? But again, why is tan20 useful (3],(6]?

 Additional confirmation of such a hypothesis could be given by an outline of a computation
 procedure leading to the tablet, which makes all of the errors plausible and also shows why they
 would have occurred preferentially in columns B and C. (See (1], (4,1(7].)

 Building upon an earlier suggestion of Bruins, an intriguing explanation has been recently
 proposed by Voils. In Nippur, a large number of "school texts" have been found, many
 containing arithmetic exercises. Among these, a standard puzzle problem is quite common. The
 student is given the difference (or sum) of an unknown number and its reciprocal and asked to
 find the number. If x is the number (called "igi") and xR is its reciprocal (called "igibi"), then
 the student is to solve the equation x-XR = d. Thus, the "igi and igibi" problems are quadratic
 equations of a standard variety.

 The school texts teach a specific solution algorithm: "Find half of d, square it, add 1, take the
 square root, and then add and subtract half of d." This is easily seen to be nothing more than a
 version of the quadratic formula, tailored to the "igi and igibi" problems. Voils connects this
 class of problems, and the algorithm above, with the Plimpton tablet as follows.

 First, assume with Bruins that the tablet was computed not from the pair (a,b) but from a
 single parameter, the number x = a + b. Since a and b are both "nice," the number x and its
 reciprocal xR can each be calculated easily. Indeed, x = a X bR and XR = b x aR, and aR and bR,
 each appear in a standard reciprocal table. Next observe that

 B = a2 b2= (ab)(x-XR)

 C= a2+ b2= (ab)(x + XR)

 A=( B )=( (x-XR)}

 This shows that the entries A, B, C in the Plimpton tablet could have been easily calculated from
 a special reciprocal table that listed the paired values x and xR. Indeed, the numbers B and C
 can be obtained from x +?xR merely by multiplying these by integers chosen to simplify the
 result and shorten the digit representation. (See [1], [2], [7].)

 Voils adds to this suggestion of Bruins the observation that the numbers A are exactly the
 results obtained at the end of the second step in the solution algorithm, (d/2)2, applied to an
 igi-igibi problem whose solution is x and xR. Furthermore, the numbers B and C can be used to
 produce other problems of the same type but having the same intermediate results in the
 solution algorithm. Thus Voils proposes that the Plimpton tablet has nothing to do with
 Pythagorean triplets or trigonometry but, instead, is a pedagogical tool intended to help a
 mathematics teacher of the period make up a large number of igi-igibi quadratic equation
 exercises having known solutions and intermediate solution steps that are easily checked (7].

 It is possible to point to another weak confirmation of this last approach. Suppose that we
 want a graduated table of numbers x and their reciprocals x R, We start with the class of all pairs
 (a, b) of relatively prime integers such that b <a < 100 and each integer a and b is "nice,"
 factorable into powers of 2, 3, and 5. It is then easy to find the terminating Babylonian
 representation for both x = a + b and for xR = b + a. Make a table of these, arranged with x
 decreasing. Impose one further restriction:

 X3- <x<I+W.
 (This corresponds to the limitation 300 <0<455, where 0 is the base angle in the triangle in
 Figure 1 1.)

 Then, the resulting list of pairs will coincide with that given in Figure 10, the corrected
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 Plimpton table, except for three minor points. The pair (16,9) does not appear, the pair (125,54)
 does appear, and instead of the pair (2,1) we have the pair (1, 2); in passing, we recall that the
 last pair yields the standard 3,4,5 Pythagorean triangle.

 Unlike Doyle's stories, this has no final resolution. Any of these reconstructions, if correct,
 throws light upon the degree of sophistication of the Babylonian mathematician and breathes
 life into what was otherwise dull arithmetic. For other vistas into the past, especially those that

 show us the beginnings of computational astronomy, I refer the reader to the bibliography. I can
 do no better than to close with an analogy used by Neugebauer:

 In the "Cloisters" of the Metropolitan Museum in New York there hangs a magnificent tapestry which

 tells the tale of the Unicorn. At the end we see the miraculous animal captured, gracefully resigned to his
 fate, standing in an enclosure surrounded by a neat little fence. This picture may serve as a simile for what
 we have attempted here. We have artfully erected from small bits of evidence the fence inside which we
 hope to have enclosed what may appear as a possible living creature. Reality, however, may be vastly
 different from the product of our imagination; perhaps it is vain to hope for anything more than a picture
 which is pleasing to the constructive mind, when we try to restore the past.

 -The Exact Sciences in Antiquity (p. 177)
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